www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration von exp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration von exp
Integration von exp < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von exp: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:02 Sa 30.01.2010
Autor: favourite

Aufgabe
(i) Ist x [mm] \in \IR, [/mm] so gilt für alle n [mm] \in \IN: [/mm]
[mm] \integral_{0}^{x}{exp(x-t)t^n dt}=n! \summe_{k=n+1}^{\infty} \bruch{x^k}{k!} [/mm]
(ii) Untersuchen Sie, ob der Grenzwert existiert und geben Sie ggf. den Grenzwert an:
[mm] \limes_{n\rightarrow\infty} \integral_{\pi}^{x}{x exp(t^2-x^2) dt} [/mm]

Hallo Ihr Lieben!

Erneut stehe ich vor einem Problem.
Zu (i): Ich komme nicht auf die Gleichung, wenn ich das Integral bestimme. Was habe ich gemacht:
[mm] \integral_{0}^{x}{exp(x-t)t^n dt}=n! \summe_{k=n+1}^{\infty} \bruch{x^k}{k!}= [/mm]
[mm] \integral_{t}^{x}{\bruch{exp(x)}{exp(t)}t^n dt}= |-exp(x)exp(-t)n+1t^{n+1}|_{0}^{x}... [/mm] Nun bleibe ich hier hängen. Habe ich hier etwas falsch gemacht?

Zu (ii): Wie kann ich hier fortfahren?!
[mm] \limes_{n\rightarrow\infty} \integral_{\pi}^{x}{x exp(t^2-x^2) dt}= [/mm]
[mm] \limes_{n\rightarrow\infty} \integral_{\pi}^{x}{x \bruch{exp(t^2)}{exp(x^2)}dt}= [/mm] (Hier habe ich die partielle Integration angewandt, aber es klappt nicht! Beim Bruch scheitere ich. Ist hier die partielle Integration richtig gewählt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

viele Grüße, favourite

        
Bezug
Integration von exp: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Sa 30.01.2010
Autor: leduart

Hallo favourite
i) geht mit vollst Induktion. für den Induktionsschritt partielle Integration verwenden .
alle Anteile mit x kannst du vor das Integral ziehen.
das ii Integral ist nicht lösbar. da steht ja
[mm] x*e^{-x^2}*\integral_{a}^{x}{e^{t^2} dt} [/mm]
Das integral selbst kann man nicht mit elementaren Mitteln lösen. Vielleicht hilft ein Reihenansatz?
Gruss leduart

Bezug
                
Bezug
Integration von exp: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 03:52 So 31.01.2010
Autor: favourite

Hallo leduart!

Den Reihenansatz kenn ich leider nicht (vllt. noch nicht). Kennst Du anderweitige Methode, um die Nichtlösbarkeit zu zeigen?

viele Grüße, favourite

Bezug
                        
Bezug
Integration von exp: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Di 02.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Integration von exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:41 So 31.01.2010
Autor: felixf

Hallo!

> (i) Ist x [mm]\in \IR,[/mm] so gilt für alle n [mm]\in \IN:[/mm]
>  
> [mm]\integral_{0}^{x}{exp(x-t)t^n dt}=n! \summe_{k=n+1}^{\infty} \bruch{x^k}{k!}[/mm]

Es ist doch [mm] $\exp(t [/mm] - x) = [mm] \exp(t) \exp(-x)$. [/mm] Setz doch mal [mm] $\exp(t) [/mm] = [mm] \sum_{k=0}^\infty \frac{x^k}{k!}$ [/mm] ein, zieh die Summe (und das [mm] $\exp(-x)$) [/mm] aus dem Integral raus, und integriere jeden Summanden einzelnd. Eventuell kommt man damit auch ganz gut zum Ziel.

> (ii) Untersuchen Sie, ob der Grenzwert existiert und geben
> Sie ggf. den Grenzwert an:
>  [mm]\limes_{n\rightarrow\infty} \integral_{\pi}^{x}{x exp(t^2-x^2) dt}[/mm]

Hier kommt das $n$ nur ein einziges mal vor: beim Limes. Also kann man ihn auch weglassen. Aber dann macht die Aufgabenstellung keinen Sinn mehr.

Also: schau mal nach ob du hier was weggelassen hast!

LG Felix


Bezug
                
Bezug
Integration von exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 So 31.01.2010
Autor: favourite

Upps,

nicht n geht gegen unendlich, sondern x.


Gruß, favourite

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]