www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrationsgrenze bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integrationsgrenze bestimmen
Integrationsgrenze bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenze bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mo 06.12.2010
Autor: Hanswerner

Aufgabe
Bestimmen Sie die Intergrationsgrenze "t"!

[mm] \integral_{t}^{4}{f(t) dt} [/mm] = 3,5

Hallo,
ich versage gerade bei der obengenannten Aufgabe. Ich bin mir nicht sicher, welchen Schritt ich als ersten machen muss.

Die Aufgabe wie gestellt kann ich hier nicht richtig eingeben, nach dem Integral kommt eigentlich t dt = 3,5.

Gruß

        
Bezug
Integrationsgrenze bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 06.12.2010
Autor: MathePower

Hallo Hanswerner,

> Bestimmen Sie die Intergrationsgrenze "t"!
>  
> [mm]\integral_{t}^{4}{f(t) dt}[/mm] = 3,5
>  Hallo,
>  ich versage gerade bei der obengenannten Aufgabe. Ich bin
> mir nicht sicher, welchen Schritt ich als ersten machen
> muss.
>  
> Die Aufgabe wie gestellt kann ich hier nicht richtig
> eingeben, nach dem Integral kommt eigentlich t dt = 3,5.


So sieht das richtig aus:

[mm]\integral_{t}^{4}{t \ dt}[/mm] = 3,5

Bestimme zunächst eine Stammfunktion zu t.

Setze dann die Integrationsgrenzen ein
und löse dann die entstehende Gleichung.


>  
> Gruß


Gruss
MathePower

Bezug
                
Bezug
Integrationsgrenze bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Mo 06.12.2010
Autor: Hanswerner

Zu t integriert wäre dann doch [mm] \bruch{1}{2} t^{2} [/mm] oder?

Bezug
                        
Bezug
Integrationsgrenze bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 06.12.2010
Autor: Steffi21

Hallo, korrekt, Steffi

Bezug
                                
Bezug
Integrationsgrenze bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Mo 06.12.2010
Autor: Hanswerner

Gut.
Dann setze ich ja ein:

[mm] [\bruch{1}{2} [/mm] * [mm] (4)x^2] [/mm] - [mm] [\bruch{1}{2} [/mm] * [mm] (t)x^2] [/mm] = 3,5

Wie löse ich das dann auf?

Bezug
                                        
Bezug
Integrationsgrenze bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 06.12.2010
Autor: MorgiJL

Abend!

nein, du musst "obere Grenze - untere Granze" rechnen und t is doch deine variable. (es war schon keine gute idee die integrationsvariable mit t zu bezeichnen und auch die grenze mit t, nenn am besten eines davon x.

Nehmen wir mal x als integrationsvariable, dann

[mm] $\int_{t}^{4} x\, [/mm] dx = 3,5$

g.d.w. [mm] $\frac{1}{2} (x^2) |_t^4 [/mm] = 3,5$ ist.

So un jetzt rechnest du wie oben beschrieben, und setz für x t und 4 ein und bekommst ne quad. gleichung.

Gruß Jan

Bezug
                                                
Bezug
Integrationsgrenze bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mo 06.12.2010
Autor: Hanswerner

Ich verstehe nicht, wie ich die quadratische Gleichung lösen soll.

Bezug
                                                        
Bezug
Integrationsgrenze bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mo 06.12.2010
Autor: MorgiJL


> Ich verstehe nicht, wie ich die quadratische Gleichung
> lösen soll.

wir haben:

[mm] $\frac{1}{2} x^2 |_t^4 [/mm] = 3,5$

[mm] $\frac{1}{2} [/mm] * 16 - [mm] \frac{1}{2}*t^2 [/mm] = 3,5$

Das stellst du ejtzt einfach nach t um (will nich alles vorrechnen), also alles was zahlen sind auf eine seite sodass dann nur noch [mm] $t^2 [/mm] =... $ da steht, dann einfach wurzel ziehen von dem was da steht.

JAn!

Bezug
                                                                
Bezug
Integrationsgrenze bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 06.12.2010
Autor: Hanswerner

$ [mm] \frac{1}{2} \cdot{} [/mm] 16 - [mm] \frac{1}{2}\cdot{}t^2 [/mm] = 3,5

= 8 * [mm] \frac{1}{2}\cdot{}t^2 [/mm] = 3,5 | : 8

= [mm] \frac{1}{2}\cdot{}t^2 [/mm] = - 4,5 | (* 2)

= [mm] t^2 [/mm] = 9

= t = 3

Ist das richtig? :)

Bezug
                                                                        
Bezug
Integrationsgrenze bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 06.12.2010
Autor: MorgiJL

jo stimmt,

schönen abend noch!

Bezug
                                                                                
Bezug
Integrationsgrenze bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mo 06.12.2010
Autor: Hanswerner

Gleichfalls und vielen Dank für die Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]