www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrationsgrenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integrationsgrenzen
Integrationsgrenzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Di 09.09.2008
Autor: NichtExistent

Aufgabe 1
Sei D das für [mm]x \in \left[1, 4\right][/mm] zwischen dem Funktionsgraph zu [mm]f(x) = \frac{1}{x}[/mm] und der x-Achse liegende Gebiet (s. Skizze). Bestimmen Sie [mm]\int_{D}^{} (x+xy^2)\, d(x,y)[/mm].

Skizze:
[Dateianhang nicht öffentlich]

Aufgabe 2
Sei [mm]f: \IR^2 \rightarrow \IR, f(x,y) = \frac{2y}{x}[/mm]. Berechnen Sie [mm]\int_{D}^{} f(x,y)\, d(x,y)[/mm] zu dem nebenstehend skizzierten Dreieck D.

Skizze:
[Dateianhang nicht öffentlich]

Hallo liebe Community,

ich habe mal wieder ein kleines Verständnisproblem. Und zwar habe ich die oben stehenden Aufgaben gegeben. Das integrieren (sollte) kein Problem darstellen. Mein Problem hier ist eher: Über was muss ich integrieren? Ich verstehe leider nicht so richtig wie ich die Grenzen anhand der Skizzen korrekt bestimmen kann. Ich weiß, das wird recht elementar sein, aber wäre nett wenn mir das jemand von euch evtl. erklären könnte. Schon mal vielen Dank!

Viele Grüße,
NE

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Integrationsgrenzen: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 13:17 Di 09.09.2008
Autor: XPatrickX

Hi,

zur ersten Aufgabe:
Die Grenzen für die Integration über x kann man ja direkt aus dem Intervall ablesen: untere Grenze x=1, obere Grenze x=4
Auch die Grenzen für y sind nicht schwer, wenn man sich in Ruhe nochmal die SKizze anguckt und den Text durchliest. Auf jeden Fall gilt ja [mm] y\ge [/mm] 0, somit ist die untere Grenze y=0 und die obere wird ja durch eine Funktion begrenzt, also [mm] y=\frac{1}{x}. [/mm]

Wichtig ist jetzt, dass du Fubini anwendest und zuerst nach y integrierst.

Grüße Patrick

Bezug
                
Bezug
Integrationsgrenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mi 10.09.2008
Autor: NichtExistent

Hey Patrick,
*an den Kopf pack* so simpel. 1000 Dank.

Lg,
NE

Bezug
        
Bezug
Integrationsgrenzen: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:22 Di 09.09.2008
Autor: XPatrickX

Hi nochmal,

die Grenzen für x sollten wieder klar sein, [mm] x\in [/mm] [0,2]
Deine y-Grenzen hängen diesmal beide von x ab, die untere ist die Gerade y=0,5x und die obere y=x.

Grüße Patrick

Bezug
                
Bezug
Integrationsgrenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Mi 10.09.2008
Autor: NichtExistent

Nochmals hey,
auch hier vielen Dank.

Lg,
NE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]