www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrationsgrenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integrationsgrenzen
Integrationsgrenzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Sa 24.01.2009
Autor: arxi

Aufgabe
Beweise: für alle t > 0 gilt:

[mm] \integral_{t}^{1}{dx/(1+x²)} [/mm] = [mm] \integral_{1}^{-t}{dx/(1+x²)} [/mm]

Im Prinzip wirkt es trivial und man lernt diesen "Trick" schon in der Oberstufe, aber den Beweis dazu leider nicht...
Bin über jede Hilfe bzw. Anregung dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrationsgrenzen: integrieren
Status: (Antwort) fertig Status 
Datum: 21:30 Sa 24.01.2009
Autor: Loddar

Hallo arxi,

[willkommenmr] !!


Was spricht denn dagegen, hier beide bestimmte Integrale zu berechnen und zu vergleichen?


Anderen falls musst Du wohl über die Achsensymmetrie der zu integrierenden Funktion [mm] $\bruch{1}{1+x^2}$ [/mm] gehen. Da der Integrand also eone gerade Funktion ist, enteht beim Integrieren eine ungerade Funktion.


Gruß
Loddar


Bezug
        
Bezug
Integrationsgrenzen: formaler Beweis
Status: (Antwort) fertig Status 
Datum: 23:02 Sa 24.01.2009
Autor: HJKweseleit

Ohne auszuintegrieren:

[mm]\integral_{t}^{1}{dx/(1+x²)}[/mm] = ...

setze m=-x  und damit dm = -dx sowie veränderte
Integrationsgrenzen: Ist x=1, so ist m=-x=-1,
ist x=t, so ist m=-x=-t:

...[mm]\integral_{-t}^{-1}{-dm/(1+(-m)²)}[/mm]

= [mm]-\integral_{-t}^{-1}{dm/(1+m²)}[/mm]...

jetzt Intrgrationsgrenzen vertauschen, dafür auch Integral-Vorzeichen

...= [mm]\integral_{-1}^{-t}{dm/(1+m²)}[/mm]...

jetzt ohne Berücksichtigung des Bisherigen nur wieder Buchstabe m durch x ersetzen

...= [mm]\integral_{-1}^{-t}{dx/(1+x²)}[/mm]...

Wie du siehst, war in der Aufgabenstellung die Integral-Untergrenze im Endergebnis (1) falsch, es muss -1 heißen.

Bezug
                
Bezug
Integrationsgrenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 So 25.01.2009
Autor: arxi

Ich danke euch für die schnelle Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]