www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrieren von Logarithmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integrieren von Logarithmen
Integrieren von Logarithmen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren von Logarithmen: ln steht im Bruch
Status: (Frage) beantwortet Status 
Datum: 13:29 Do 08.03.2007
Autor: Flomo

Aufgabe
Berechne das Integral!

Hallo.

Ich brauche einen Weg diese Aufgabe zu lösen. Hab mir schon den Kopf zermatert. Ich hatte es mit Substitution versucht und mit partieller Integration, aber ich fand die Zwischenergebnisse zu schwierig.

[mm] \integral_{1}^{2}{\bruch{ln (x)}{(1+x)^2} dx} [/mm]


Ich danke Euch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Integrieren von Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 08.03.2007
Autor: MatthiasKr

Hi,

also wenn das mal keine schnelle antwort ist! ;-)

ein weg, das ding zu berechnen ist

- partielle integration : den logarithmus ableiten, den bruch aufleiten
- dann integration des restintegrals durch partialbruchzerlegung

habs jetzt nur im kopf überschlagen, aber sollte nicht so schwer sein.

VG
Matthias


> Berechne das Integral!
>  Hallo.
>
> Ich brauche einen Weg diese Aufgabe zu lösen. Hab mir schon
> den Kopf zermatert. Ich hatte es mit Substitution versucht
> und mit partieller Integration, aber ich fand die
> Zwischenergebnisse zu schwierig.
>  
> [mm]\integral_{1}^{2}{\bruch{ln (x)}{(1+x)^2} dx}[/mm]
>  
>
> Ich danke Euch
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Integrieren von Logarithmen: Partialbruch geht nicht
Status: (Frage) beantwortet Status 
Datum: 13:50 Do 08.03.2007
Autor: Flomo

wenn ich es mit Partieller Integration bis

[mm] \bruch{-ln(x)}{1+x} +\integral_{1}^{2}{\bruch{1}{x*(1+x}dx} [/mm]

geschafft habe, kann ich doch keine Partialbruchzerlegung machen, oder? Es steht doch eine 1 im Zähler.

Bezug
                        
Bezug
Integrieren von Logarithmen: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 13:55 Do 08.03.2007
Autor: Roadrunner

Hallo Flomo!


Klar kannst Du hier eine MBPartialbruchzerlegung machen; da stört auch das $1_$ im Zähler nicht:

[mm] $\bruch{1}{x*(x+1)} [/mm] \ = \ [mm] \bruch{A}{x}+\bruch{B}{x+1}$ [/mm]


Als Ergebnis solltest Du dann erhalten: $A \ = \ 1$ sowie $B \ = \ -1$ .


Gruß vom
Roadrunner


Bezug
                                
Bezug
Integrieren von Logarithmen: werd es nochmal versuchen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Do 08.03.2007
Autor: Flomo

Danke, ich war etwas voreilig

Bezug
                                
Bezug
Integrieren von Logarithmen: Ergebnis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Do 08.03.2007
Autor: Flomo

Ich willEuch nochmals danken, es hat wunderbar funktioniert mit der Partialbruchzerlegung:


[mm]\bruch{1}{x*(x+1)} \ = \ \bruch{A}{x}+\bruch{B}{x+1}[/mm]

1= Ax + B(1+x)
1= Ax + B + Bx
1= x*(A + B) +B

I    0 = A+B
II   1= B

A=-B
A=-1
B=1

Ergebnis: [mm] \bruch{5}{3}* [/mm] ln(2) - ln(3)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]