www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrieren von einem Bruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integrieren von einem Bruch
Integrieren von einem Bruch < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren von einem Bruch: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 20:28 So 07.02.2010
Autor: MatheNullplan00

Aufgabe
Man integriere:

[mm] \integral\bruch{1+cos(x)}{x+sin(x)} [/mm] dx

Guten Abend,

ich soll das oben genannte Integrieren. Ich weiß nicht genau wie ich einen Bruch integriere, wie ich da am Besten vorgehen soll.
Laut den schönen Tabellen die man benutzen darf weiß man ja, dass
cos x = F(x) sin x
und
sin x F(x) = - cos x

Hoffe jemand ist gewillt mir weiterzuhelfen. ;-)

Viele Grüße


        
Bezug
Integrieren von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 07.02.2010
Autor: MathePower

Hallo MatheNullplan00,

> Man integriere:
>
> [mm]\integral\bruch{1+cos(x)}{x+sin(x)}[/mm] dx
>  Guten Abend,
>
> ich soll das oben genannte Integrieren. Ich weiß nicht
> genau wie ich einen Bruch integriere, wie ich da am Besten
> vorgehen soll.
> Laut den schönen Tabellen die man benutzen darf weiß man
> ja, dass
> cos x = F(x) sin x
> und
>  sin x F(x) = - cos x
>  
> Hoffe jemand ist gewillt mir weiterzuhelfen. ;-)


Schau mal etwas genauer hin.

Im Zähler steht die Ableitung des Nenners.


>  
> Viele Grüße

>


Gruss
MathePower  

Bezug
                
Bezug
Integrieren von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 So 07.02.2010
Autor: MatheNullplan00

Hallo MathePower,

ah ja, stimmt. :-) Aber mein Problem liegt darin, das ich nicht weiß, wie es dann weiter geht. Ich glaub der Bruch verwirrt mich irgendwie...

Bezug
                        
Bezug
Integrieren von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 So 07.02.2010
Autor: schachuzipus

Hallo,

> Hallo MathePower,
>  
> ah ja, stimmt. :-) Aber mein Problem liegt darin, das ich
> nicht weiß, wie es dann weiter geht. Ich glaub der Bruch
> verwirrt mich irgendwie...  

Nun, integriere mal ganz allgemein:

[mm] $\int{\frac{f'(x)}{f(x)} \ dx}$ [/mm] mit der Substitution $z=z(x):=f(x)$

Dann hast du ne allg. Formel, die du auf dein Integral anwenden kannst ...

Gruß

schachuzipus


Bezug
                                
Bezug
Integrieren von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 So 07.02.2010
Autor: MatheNullplan00


> Nun, integriere mal ganz allgemein:

> $ [mm] \int{\frac{f'(x)}{f(x)} \ dx} [/mm] $ mit der Substitution z=z(x):=f(x)

ähm, ich glaub ich sitzt auf dem Schlauch, was meinst du?

Bezug
                                        
Bezug
Integrieren von einem Bruch: Substitution
Status: (Antwort) fertig Status 
Datum: 21:09 So 07.02.2010
Autor: Loddar

Hallo MatheNullplan!


Wenn Du das o.g. Integral nicht allgemein lösen willst, wende das Lösungsverfahren auf Deine spezielle Funktion an.

Dabei musst Du folgende Substitution durchführen:
$$z \ := \ [mm] x+\sin(x)$$ [/mm]

Gruß
Loddar



Bezug
                                                
Bezug
Integrieren von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 07.02.2010
Autor: MatheNullplan00


> Wenn Du das o.g. Integral nicht allgemein lösen willst.

Ich würde es schon gerne allgemein lösen, nur hab ich ein verständniss Problem. Ich weiß nicht wie ich integriere bei einem Bruch.

Substitution:
$ [mm] \integral\bruch{1+cos(x)}{x+sin(x)} [/mm] $ dx

= $ [mm] \integral\bruch{1+cos(x)}{z} [/mm] $ dx

Oder wie ist das gemeint?

Bezug
                                                        
Bezug
Integrieren von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 So 07.02.2010
Autor: XPatrickX

Hallo,

du musst das Differential $dx$ noch substituieren, berechne dazu [mm] \frac{dz}{dx}=z'(x)=... [/mm] und stelle nach $dx$ um, danach erhälst du ein einfaches Integral.

Wenn du diesen Spezialfall verstanden hast, wirst du auch die allgemeine Methode erkennen.

Gruß Patrick

Bezug
                                                                
Bezug
Integrieren von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 So 14.02.2010
Autor: MatheNullplan00

Hallo,

ich habe immer noch Probleme mit der Lösung der Aufgabe.

$ [mm] \integral\bruch{1+cos(x)}{x+sin(x)} [/mm] $ dx

Mit dieser Formel lässt es sich doch Lösen g(x) [mm] =\bruch{f'(x)}{f(x)} [/mm] ?
G(x) = ln(f(x))

=[ ln(x+sin(x))]

Bezug
                                                                        
Bezug
Integrieren von einem Bruch: Okay
Status: (Antwort) fertig Status 
Datum: 14:16 So 14.02.2010
Autor: Infinit

Ja, diese Formel kannst Du hier anwenden und hast dann das Ergebnis gleich dastehen.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]