Intervallschachtelung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:02 Di 04.12.2007 | Autor: | himbeersenf |
Aufgabe | Seien a und b [mm] \in \IR [/mm] mit a,b<0. Def. A(a,b) = [mm] \bruch{a+b}{2} [/mm] und G(a,b) = [mm] \wurzel{ab} [/mm] und H(a,b) = [mm] \bruch{2ab}{a+b}
[/mm]
i) beweise die Ungleichungen H(a,b) [mm] \le [/mm] G(a,b) [mm] \le [/mm] A(a,b) und zeige, dass Gleichheit der Mittel nur für a=b gilt.
ii) Sei 0<a<b. Sei [mm] ([a_{n};b_{n}])_{n \in \IN} [/mm] eine Folge von Intervallen mit [mm] [a_{1};b_{1}] [/mm] = [a;b], [mm] a_{n+1}:= G(a_{n},b_{n}) [/mm] und [mm] b_{n+1}:= A(a_{n},b_{n}). [/mm] Zeige, dass diese Folge eine Intervallschachtelung bildet. Zeigen Sie ferner die Abschätzung [mm] b_{n+1} [/mm] - [mm] a_{n+1} \le \bruch{1}{8a}(b_{n} [/mm] - [mm] a_{n})^{2}. [/mm] |
zu i): 1. [mm] (\wurzel{a} [/mm] - [mm] \wurzel{b})^{2} \ge [/mm] 0 => [mm] 2\wurzel{ab} \le [/mm] a+b => [mm] \wurzel [/mm] {ab} [mm] \le \bruch{a+b}{2} [/mm] => G(a,b) [mm] \le [/mm] A(a,b)
außerdem [mm] 2\wurzel{ab} \le [/mm] a+b => [mm] 2\wurzel{ab} \bruch{\wurzel{ab}}{\wurzel{ab}} \le [/mm] a+b => [mm] \bruch{2ab}{\wurzel{ab}} \le [/mm] a+b => 2ab [mm] \le [/mm] (a+b) [mm] \wurzel{ab} [/mm] => H(a,b) [mm] \le [/mm] G(a,b).
2. Gleichheit. "=>" Sei a=b. Einsetzen und Umformen liefert Gleichheit der Mittel.
"<=" wg. i) reicht als Vorraussetzung H(a,b) = A(a,b) => 4ab = [mm] (a+b)^{2} [/mm] = [mm] a^2+2ab+b^2 [/mm] => [mm] a^2-2ab+b^2 [/mm] = 0 => [mm] (a-b)^{2} [/mm] = 0 => a=b.
So, die Rechnerei war ja ganz nett, und wie gehts' jetzt mit ii) weiter?
Weiß nur dass ich zeigen muss [mm] [a_{n+1};b_{n+1}] \subset [a_{n};b_{n}] [/mm] und [mm] \forall \varepsilon [/mm] <0 [mm] \exists [/mm] n [mm] \in \IN [/mm] : [mm] b_{n} [/mm] - [mm] a_{n} [/mm] (die Betragsstriche kann man weglassen, da [mm] b_{n} [/mm] > [mm] a_{n} [/mm] lt. Definition.)
Viele Grüße,
Julia
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:26 Di 04.12.2007 | Autor: | leduart |
Hallo
an deiner Aufgabe ist was falsch, da steht [mm] a_{n+1}=b_{n+1}
[/mm]
korrigier das doch. dann nur heftig a) anwenden und für die konvergenz die Abschätzung die ja vorgegeben ist zeigen.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:31 Di 04.12.2007 | Autor: | lenz |
hi
es steht eine ähnliche aufgabe im königsberger
ü-aufgaben kapitel 2(mit lösung(da ist b(n) allerdings A))
lenz
|
|
|
|
|
Den Fehler in der Aufgabenstellung habe ich berichtigt. Bei der Armee von Formelgrafiken musste ich mich ja irgendwo vertippen Es ist [mm] b_{n+1}:= A(a_{n},b_{n}) [/mm] wie im Königsberger. Habe das Buch vor mir liegen, die Lösung hilft mir aber nur zum Teil.
Da heißt es nur "analog zu Aufgabe 5", wo [mm] a_{n+1} [/mm] = H(a,b). Da hier [mm] b_{n}-a_{n} [/mm] gegen 0 konvergiert, gilt das erst recht, wenn [mm] a_{n+1} [/mm] = [mm] A(a_{n}-b_{n}) \ge G(a_{n}-b_{n}).
[/mm]
Der Konvergenzbeweis ist mir ganz schlüssig, wobei ich ohne die Lösung von Aufgabe 5 nie drauf gekommen wäre. Kann man die in meiner Aufgabe gefragte Konvergenz auch direkt beweisen?
Zu der Inklusion hab ich auch noch eine Frage. [mm] b_{n+1} [/mm] < [mm] b_{n} [/mm] kann man leicht beweisen mit [mm] A(a_{n},b_{n}) [/mm] = [mm] \bruch{a_{n}+b_{n}}{2} [/mm] < [mm] \bruch{b_{n}+b_{n}}{2} [/mm] = [mm] b_{n}.
[/mm]
Aber bei [mm] a_{n+1} [/mm] > [mm] a_{n} [/mm] hab ich so meine Schwierigkeiten.
für [mm] a_{n} [/mm] <1 gilt [mm] \wurzel{a_{n}b_{n}} [/mm] > [mm] \wurzel{a_{n}a_{n}} [/mm] = [mm] a_{n}. [/mm] Für [mm] a_{n} [/mm] > 1 gilt [mm] \wurzel{a_{n}b_{n}} [/mm] < [mm] \wurzel{a_{n}a_{n}} [/mm] = [mm] a_{n}. [/mm] Letzeres ist ein Widerspruch zur Behauptung. Wo ist da mein Denkfehler? Hab mal wieder ein Brett vorm Kopf...
Viele Grüße,
Julia
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:44 Fr 07.12.2007 | Autor: | rainerS |
Hallo Julia!
> Aber bei [mm]a_{n+1}[/mm] > [mm]a_{n}[/mm] hab ich so meine Schwierigkeiten.
> für [mm]a_{n}[/mm] <1 gilt [mm]\wurzel{a_{n}b_{n}}[/mm] >
> [mm]\wurzel{a_{n}a_{n}}[/mm] = [mm]a_{n}.[/mm] Für [mm]a_{n}[/mm] > 1 gilt
> [mm]\wurzel{a_{n}b_{n}}[/mm] < [mm]\wurzel{a_{n}a_{n}}[/mm] = [mm]a_{n}.[/mm] Letzeres
> ist ein Widerspruch zur Behauptung. Wo ist da mein
> Denkfehler? Hab mal wieder ein Brett vorm Kopf...
Du benutzt die Ungleichung [mm]a_n
Viele Grüße
Rainer
|
|
|
|