www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntervallschachtelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Intervallschachtelung
Intervallschachtelung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallschachtelung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 24.10.2009
Autor: SuperHomer

Aufgabe
Es sei a [mm] \in \IR [/mm] mit a > 0 und [mm] t_{0} \in \IR [/mm] mit [mm] t_{0} \not= [/mm] 0. Man beachte [mm] t_{n+1} [/mm] := [mm] \bruch{1}{2}*(t_{n} [/mm] + [mm] \bruch{a}{t_{n}}), s_{n} [/mm] := [mm] \bruch {a}{t_{n}} [/mm]

Für welche a und [mm] t_{0} [/mm] ist die [mm] Menge{[s_{n}, t_{n}]} [/mm] n [mm] \in \IN [/mm] eine Intervallschachtelung?

Ich habe das jetzt erst mal experimentell für die Zahlen [mm] t_{0} [/mm] = 5 und a = 2  und auch für a=3 gelöst. Daraus erkenne ich, dass das Ergebnis [mm] \wurzel{a} [/mm] sein muss.

Jetzt weiß ich nur nicht wie ich das beweisen kann also mir a und nicht mit konkreten Zahlen.

[mm] t_{0} [/mm] muss ja größer als [mm] \wurzel{a} [/mm] sein ansonsten wäre es ja keine Intervallschachtelung. sehe ich das bis dahin richtig? könnte mir jemand eine Gedankenstütze geben und mir weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Sa 24.10.2009
Autor: rainerS

Hallo!

> Es sei a [mm]\in \IR[/mm] mit a > 0 und [mm]t_{0} \in \IR[/mm] mit [mm]t_{0} \not=[/mm]
> 0. Man beachte [mm]t_{n+1}[/mm] :=
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

[mm]\bruch{1}{2}*(t_{n}[/mm] +

> [mm]\bruch{a}{t_{n}}), s_{n}[/mm] := [mm]\bruch {a}{t_{n}}[/mm]
>  
> Für welche a und [mm]t_{0}[/mm] ist die [mm]Menge{[s_{n}, t_{n}]}[/mm] n [mm]\in \IN[/mm]
> eine Intervallschachtelung?
>  Ich habe das jetzt erst mal experimentell für die Zahlen
> [mm]t_{0}[/mm] = 5 und a = 2  und auch für a=3 gelöst. Daraus
> erkenne ich, dass das Ergebnis [mm]\wurzel{a}[/mm] sein muss.
>
> Jetzt weiß ich nur nicht wie ich das beweisen kann also
> mir a und nicht mit konkreten Zahlen.
>  
> [mm]t_{0}[/mm] muss ja größer als [mm]\wurzel{a}[/mm] sein ansonsten wäre
> es ja keine Intervallschachtelung. sehe ich das bis dahin
> richtig? könnte mir jemand eine Gedankenstütze geben und
> mir weiterhelfen?

Das ist soweit richtig, aber nicht weit genug gedacht. Jedes Intervall muss ja ganz im vorherigen Intervall liegen, also

[mm] [s_{n+1},t_{n+1}]\subsetneq [s_n,t_n][/mm],

und sogar kleiner sein, also [mm] $s_n
Was kannst du aus diesen Ungleichungen machen?

Viele Grüße
   Rainer

Bezug
                
Bezug
Intervallschachtelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Sa 24.10.2009
Autor: SuperHomer


> Hallo!
>  
> > Es sei a [mm]\in \IR[/mm] mit a > 0 und [mm]t_{0} \in \IR[/mm] mit [mm]t_{0} \not=[/mm]
> > 0. Man beachte [mm]t_{n+1}[/mm] :=
>  > Ich habe diese Frage in keinem Forum auf anderen

> > Internetseiten gestellt.
> [mm]\bruch{1}{2}*(t_{n}[/mm] +
> > [mm]\bruch{a}{t_{n}}), s_{n}[/mm] := [mm]\bruch {a}{t_{n}}[/mm]
>  >  
> > Für welche a und [mm]t_{0}[/mm] ist die [mm]Menge{[s_{n}, t_{n}]}[/mm] n [mm]\in \IN[/mm]
> > eine Intervallschachtelung?
>  >  Ich habe das jetzt erst mal experimentell für die
> Zahlen
> > [mm]t_{0}[/mm] = 5 und a = 2  und auch für a=3 gelöst. Daraus
> > erkenne ich, dass das Ergebnis [mm]\wurzel{a}[/mm] sein muss.
> >
> > Jetzt weiß ich nur nicht wie ich das beweisen kann also
> > mir a und nicht mit konkreten Zahlen.
>  >  
> > [mm]t_{0}[/mm] muss ja größer als [mm]\wurzel{a}[/mm] sein ansonsten wäre
> > es ja keine Intervallschachtelung. sehe ich das bis dahin
> > richtig? könnte mir jemand eine Gedankenstütze geben und
> > mir weiterhelfen?
>  
> Das ist soweit richtig, aber nicht weit genug gedacht.
> Jedes Intervall muss ja ganz im vorherigen Intervall
> liegen, also
>  
> [mm][s_{n+1},t_{n+1}]\subsetneq [s_n,t_n][/mm],
>  
> und sogar kleiner sein, also [mm]s_n
>  
> Was kannst du aus diesen Ungleichungen machen?
>  
> Viele Grüße
>     Rainer


Wenn ich das jetzt richtig sehe habe ich eine Ungleichung die besagt das
[mm] s_{n} [/mm] < [mm] t_{n+1} [/mm]

wenn ich dann [mm] s_n [/mm] und [mm] t_{n+1} [/mm] einsetze erhalte ich ja
[mm] \bruch {a}{t_{n}} [/mm] < [mm] \bruch{1}{2}*(t_{n} [/mm] + [mm] \bruch{a}{t_{n}}) [/mm]
Soweit jetzt noch richtig oder?

jetzt kann ich ja denke ich zumindest
[mm] \bruch{a}{t_{n}} [/mm] < [mm] \bruch{t_n}{2} [/mm] + [mm] \bruch{a}{2*t_{n}} [/mm]  und das dann auf beiden Seiten *2 rechnen so erhalte ich


[mm] \bruch{2*a}{t_{n}} [/mm] < [mm] t_n [/mm] + [mm] \bruch{a}{t_{n}} [/mm] jetzt kann ich ja mit [mm] \bruch{t_{n}{a}} [/mm] beide seiten multiplizieren und ich erhalte

a < [mm] t_n [/mm]

Stimmt das jetzt alles?

muss ich am Ende gar nicht auf [mm] \wurzel{a} [/mm] kommen?

Bezug
                        
Bezug
Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Sa 24.10.2009
Autor: rainerS

Hallo!

> > Hallo!
>  >  
> > > Es sei a [mm]\in \IR[/mm] mit a > 0 und [mm]t_{0} \in \IR[/mm] mit [mm]t_{0} \not=[/mm]
> > > 0. Man beachte [mm]t_{n+1}[/mm] :=
>  >  > Ich habe diese Frage in keinem Forum auf anderen

> > > Internetseiten gestellt.
> > [mm]\bruch{1}{2}*(t_{n}[/mm] +
> > > [mm]\bruch{a}{t_{n}}), s_{n}[/mm] := [mm]\bruch {a}{t_{n}}[/mm]
>  >  >  
> > > Für welche a und [mm]t_{0}[/mm] ist die [mm]Menge{[s_{n}, t_{n}]}[/mm] n [mm]\in \IN[/mm]
> > > eine Intervallschachtelung?
>  >  >  Ich habe das jetzt erst mal experimentell für die
> > Zahlen
> > > [mm]t_{0}[/mm] = 5 und a = 2  und auch für a=3 gelöst. Daraus
> > > erkenne ich, dass das Ergebnis [mm]\wurzel{a}[/mm] sein muss.
> > >
> > > Jetzt weiß ich nur nicht wie ich das beweisen kann also
> > > mir a und nicht mit konkreten Zahlen.
>  >  >  
> > > [mm]t_{0}[/mm] muss ja größer als [mm]\wurzel{a}[/mm] sein ansonsten wäre
> > > es ja keine Intervallschachtelung. sehe ich das bis dahin
> > > richtig? könnte mir jemand eine Gedankenstütze geben und
> > > mir weiterhelfen?
>  >  
> > Das ist soweit richtig, aber nicht weit genug gedacht.
> > Jedes Intervall muss ja ganz im vorherigen Intervall
> > liegen, also
>  >  
> > [mm][s_{n+1},t_{n+1}]\subsetneq [s_n,t_n][/mm],
>  >  
> > und sogar kleiner sein, also [mm]s_n
>  >  
> > Was kannst du aus diesen Ungleichungen machen?
>  >  
> > Viele Grüße
>  >     Rainer
>
>
> Wenn ich das jetzt richtig sehe habe ich eine Ungleichung
> die besagt das
> [mm]s_{n}[/mm] < [mm]t_{n+1}[/mm]
>  
> wenn ich dann [mm]s_n[/mm] und [mm]t_{n+1}[/mm] einsetze erhalte ich ja
>  [mm]\bruch {a}{t_{n}}[/mm] < [mm]\bruch{1}{2}*(t_{n}[/mm] +
> [mm]\bruch{a}{t_{n}})[/mm]
> Soweit jetzt noch richtig oder?
>  
> jetzt kann ich ja denke ich zumindest
> [mm]\bruch{a}{t_{n}}[/mm] < [mm]\bruch{t_n}{2}[/mm] + [mm]\bruch{a}{2*t_{n}}[/mm]  und
> das dann auf beiden Seiten *2 rechnen so erhalte ich
>  
>
> [mm]\bruch{2*a}{t_{n}}[/mm] < [mm]t_n[/mm] + [mm]\bruch{a}{t_{n}}[/mm]

[ok]

> jetzt kann ich
> ja mit [mm]\bruch{t_{n}{a}}[/mm] beide seiten multiplizieren und ich
> erhalte
>  
> a < [mm]t_n[/mm]

Also ich bekomme da [mm] $a
Übrigens ist damit auch [mm] $s_n [/mm] = [mm] \bruch{a}{t_n} [/mm] < [mm] \sqrt{a}$. [/mm]

Und ferner gilt [mm] $t_{n+1}-s_{n+1} [/mm] = [mm] \bruch{1}{2} (t_n-s_n)$, [/mm] sodass die Kovergenz gegen [mm] $\sqrt{a}$ [/mm] gesichert ist.

Viele Grüße
   Rainer



Bezug
                                
Bezug
Intervallschachtelung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Sa 24.10.2009
Autor: SuperHomer


> Also ich bekomme da [mm]a
>  
> Übrigens ist damit auch [mm]s_n = \bruch{a}{t_n} < \sqrt{a}[/mm].
>  
> Und ferner gilt [mm]t_{n+1}-s_{n+1} = \bruch{1}{2} (t_n-s_n)[/mm],
> sodass die Kovergenz gegen [mm]\sqrt{a}[/mm] gesichert ist.
>  
> Viele Grüße
>     Rainer
>  
>  

ja kommt auch raus... habe es jetzt auch. War nur zu dumm richtig aufzulösen -.- naja was solls ich danke ihnen für ihre schnellen antworten, ich bin froh das ich das jetzt verstanden habe.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]