Intervallschachtelung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien Folgen [mm] (a_{n}) [/mm] und [mm] (b_{n}) [/mm] mit 0 < [mm] a_{0} [/mm] < [mm] b_{0} [/mm] gegeben durch
[mm] a_{n+1} [/mm] = [mm] \sqrt{a_{n} b_{n}} [/mm] , [mm] b_{n+1} [/mm] = [mm] \frac{a_{n}+b_{n}}{2}
[/mm]
Zeigen Sie, dass die Intervalle [mm] I_{n} [/mm] = [mm] [a_{n},b_{n}] [/mm] eine Intervallschachtelung mit gemeinsamen Grenzwert [mm] M(a_{0},b_{0}) [/mm] = [mm] \lim \limits_{n \to \infty} a_{n} [/mm] = [mm] \lim \limits_{n \to \infty} b_{n} [/mm] bilden. |
Leider weiß ich nicht so recht, wie ich an die Aufgabe herangehen soll. Ich habe gesehen, dass [mm] (I_{n})_{n \in N} [/mm] eine Intervallschachtelung ist, wenn [mm] I_{n+1} \subset I_{n} \forall [/mm] n [mm] \in [/mm] N und [mm] \lim \limits_{n \to \infty} |I_{n}| [/mm] = 0 gilt.
Um zu zeigen, dass [mm] I_{n+1} \subset I_{n} \forall [/mm] n [mm] \in [/mm] N gilt, wollte ich [mm] a_{n+1} [/mm] > [mm] a_{n} [/mm] und [mm] b_{n+1} [/mm] < [mm] b_{n} [/mm] mit Induktion zeigen.
1) [mm] a_{n+1} [/mm] > [mm] a_{n}:
[/mm]
n=0 :
[mm] a_{1} [/mm] = [mm] \sqrt{a_{0} b_{0}} \Leftrightarrow (a_{1})^{2} [/mm] = [mm] a_{0} b_{0} [/mm] > [mm] a_{0} a_{0} \Rightarrow a_{1} [/mm] > [mm] a_{0}
[/mm]
n [mm] \rightarrow [/mm] n+1:
[mm] a_{n+2} [/mm] = [mm] \sqrt{a_{n+1} b_{n+1}} \Leftrightarrow (a_{n+2})^{2} [/mm] = [mm] a_{n+1} b_{n+1}
[/mm]
Nun müsste man noch zeigen, dass [mm] b_{n+1} [/mm] > [mm] a_{n+1} [/mm] . An Dieser stelle komme ich aber nicht weiter.
Leider weiß ich auch überhaupt nicht, ob diese Vorgehensweise so richtig ist, oder ob etwas anderes verlangt ist. Ich würde mich freuen, wenn jemand etwas zu der Vorgehensweise bei dieser Art von Aufgabe sagen könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:08 Sa 13.04.2013 | Autor: | Helbig |
> Seien Folgen [mm](a_{n})[/mm] und [mm](b_{n})[/mm] mit 0 < [mm]a_{0}[/mm] < [mm]b_{0}[/mm]
> gegeben durch
>
> [mm]a_{n+1}[/mm] = [mm]\sqrt{a_{n} b_{n}}[/mm] , [mm]b_{n+1}[/mm] =
> [mm]\frac{a_{n}+b_{n}}{2}[/mm]
>
> Zeigen Sie, dass die Intervalle [mm]I_{n}[/mm] = [mm][a_{n},b_{n}][/mm] eine
> Intervallschachtelung mit gemeinsamen Grenzwert
> [mm]M(a_{0},b_{0})[/mm] = [mm]\lim \limits_{n \to \infty} a_{n}[/mm] = [mm]\lim \limits_{n \to \infty} b_{n}[/mm]
> bilden.
>
>
>
>
> Leider weiß ich nicht so recht, wie ich an die Aufgabe
> herangehen soll. Ich habe gesehen, dass [mm](I_{n})_{n \in N}[/mm]
> eine Intervallschachtelung ist, wenn [mm]I_{n+1} \subset I_{n} \forall[/mm]
> n [mm]\in[/mm] N und [mm]\lim \limits_{n \to \infty} |I_{n}|[/mm] = 0 gilt.
>
> Um zu zeigen, dass [mm]I_{n+1} \subset I_{n} \forall[/mm] n [mm]\in[/mm] N
> gilt, wollte ich [mm]a_{n+1}[/mm] > [mm]a_{n}[/mm] und [mm]b_{n+1}[/mm] < [mm]b_{n}[/mm] mit
> Induktion zeigen.
>
> 1) [mm]a_{n+1}[/mm] > [mm]a_{n}:[/mm]
>
> n=0 :
> [mm]a_{1}[/mm] = [mm]\sqrt{a_{0} b_{0}} \Leftrightarrow (a_{1})^{2}[/mm] =
> [mm]a_{0} b_{0}[/mm] > [mm]a_{0} a_{0} \Rightarrow a_{1}[/mm] > [mm]a_{0}[/mm]
>
> n [mm]\rightarrow[/mm] n+1:
> [mm]a_{n+2}[/mm] = [mm]\sqrt{a_{n+1} b_{n+1}} \Leftrightarrow (a_{n+2})^{2}[/mm]
> = [mm]a_{n+1} b_{n+1}[/mm]
>
> Nun müsste man noch zeigen, dass [mm]b_{n+1}[/mm] > [mm]a_{n+1}[/mm] . An
> Dieser stelle komme ich aber nicht weiter.
Hallo Stephan,
zeige zuerst per Induktion [mm] $a_n [/mm] < [mm] b_n\,.$ [/mm] Hierzu zeige allgemein: Das geometrische Mittel [mm] $\sqrt [/mm] {a*b}$ der beiden verschiedenen positiven Zahlen $a, b$ ist kleiner als deren arithmetisches Mittel [mm] $(a+b)/2\,.$
[/mm]
> Leider weiß ich auch überhaupt nicht, ob diese
> Vorgehensweise so richtig ist, oder ob etwas anderes
> verlangt ist. Ich würde mich freuen, wenn jemand etwas zu
> der Vorgehensweise bei dieser Art von Aufgabe sagen
> könnte.
Sonst bist Du auf dem richtigen Weg!
Gruß,
Wolfgang
|
|
|
|