www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseInvariante Maße - Markoff
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Invariante Maße - Markoff
Invariante Maße - Markoff < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invariante Maße - Markoff: Markoff-Ketten
Status: (Frage) beantwortet Status 
Datum: 11:41 Mi 30.03.2011
Autor: kuemmelsche


Hallo zusammen,

angenommen ich habe eine Markoff-Kette gegeben durch die Matrix [mm] $\mathbb{P}$ [/mm] aus Übergangskernen und suche die invariante Verteilung.

Die Potenzen von [mm] $\mathbb{P}$ [/mm] lassen sich nicht einfach bestimmen. Es handelt sich um eine irreduzible Kette mit Periobe 1. Wenn ich herausfinden möchte, ob die Kette Null, positiv oder nicht-rekurrent ist, habe ich da einen einfacheren Weg als das Gleichungssystem [mm]\mathbb{Q}=\mathbb{Q}^T \mathbb{P}[/mm] zu lösen, wobei [mm] $\mathbb{Q}$ [/mm] die invarianten Maße $q(i)$ von Zustand i enthalten und dann zu schauen ob es aufgeht oder nicht?

Danke schonmal!

lg Kai


        
Bezug
Invariante Maße - Markoff: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 30.03.2011
Autor: Blech

Hi,

auf die Gefahr hin, daß ich hier gerade was grob mißverstehe, aber Du suchst doch nur einen Vektor q, der

[mm] $q^t=q^tP$ [/mm]
[mm] $\Leftrightarrow\ q^t(P-E)=0$ [/mm]

erfüllt. Sofern das LGS eine nicht-negative Lösung hat (was man bei einem LGS leicht herausfinden kann), kannst Du die skalieren, so daß q eine WVerteilung ist.

ciao
Stefan




Bezug
                
Bezug
Invariante Maße - Markoff: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:19 Mi 30.03.2011
Autor: kuemmelsche

Ja genau so hab ich das gemeint. Aber wenn ich mich frage ob die Markoff-Kette rekurrent oder non-rekurrent ist, dann muss ich das erst ausrechnen, also ich kann es der Matrix nicht "ansehen".

Das wollte ich wissen - aber das hat sich jetzt eh erledigt da ja im endlichen Zustandsraum immer positive rekurrenz sein muss.

Wenn ich jetzt "unendliche" Matrizen hab muss ich genauso rangehen oder?

lg Kai


Bezug
                        
Bezug
Invariante Maße - Markoff: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Do 31.03.2011
Autor: Blech

Hi,

so zuversichtlich, wie Du von *der* invarianten Verteilung geschrieben hast, ging ich davon aus, daß Du Dich um die Details kümmerst. =)


Für unendliche Zustandsräume ist, denk ich, weder Rekurrenz noch das Lösen des LGS im allgemeinen besonders leicht. Das ganze ist schon ne Weile her, und ich bin mir absolut nicht sicher, aber ich denke Du schaust da situationsabhängig, ob Matrixpotenzen oder Übergangswkeiten allgemein eine Gesetzmäßigkeit haben, mit der Du n-Schritt Übergänge berechnen kannst.


ciao
Stefan

Bezug
                        
Bezug
Invariante Maße - Markoff: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 01.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]