www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInvariante Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Invariante Unterräume
Invariante Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invariante Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Mo 23.04.2007
Autor: Sina.S

Aufgabe
Es seien K ein Körper, 0 ungleich [mm] \lambda \in [/mm] K und A := [mm] \pmat{ 1 & \lambda \\ -\lambda & 1 }. [/mm] Der Endomorphismus Phi [mm] \in [/mm] End(K²) wird beschrieben durch [mm] D_{S}(Phi) [/mm] = A. Finden Sie für K = [mm] \IQ, [/mm] K = [mm] \IC, [/mm] K = [mm] \IF_{2}, [/mm] sowie K = [mm] \IF_{3} [/mm] alle Phi-invarianten Unterräume von K².

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Matheraum-Community,

leider muss ich eure Hilfe in Anspruch nehmen, da mir diese Aufgabe den letzten Nerv raubt. Bis dato war ich stille Leserin und habe meine Probleme ohne die Zeitaufwendung Anderer gelöst...
Ich weiß mittlerweile, dass in Phi-invarianter Unterraum die Form [mm] \pmat{ A & * \\ 0 & B } [/mm] besitzt, kann aber mit dem Rest der Aufgabenstellung nichts anfangen.
Vielleicht kann mir jemand auf die Sprünge helfen.

Gruß
Sina

        
Bezug
Invariante Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 24.04.2007
Autor: angela.h.b.


> Es seien K ein Körper, 0 ungleich [mm]\lambda \in[/mm] K und A :=
> [mm]\pmat{ 1 & \lambda \\ -\lambda & 1 }.[/mm] Der Endomorphismus
> Phi [mm]\in[/mm] End(K²) wird beschrieben durch [mm]D_{S}(Phi)[/mm] = A.
> Finden Sie für K = [mm]\IQ,[/mm] K = [mm]\IC,[/mm] K = [mm]\IF_{2},[/mm] sowie K =
> [mm]\IF_{3}[/mm] alle Phi-invarianten Unterräume von K².
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

>

Hallo,

[willkommenmr].

U invarianter Unterraum bedeutet ja:

[mm] \Phi [/mm] (U) [mm] \subseteq [/mm] U.

Als Vektorraum haben wir hier [mm] K^2, [/mm] dessen Dimension =2.

Selbstverständlich sind [mm] K^2 [/mm] und [mm] {\vektor{0\\ 0}} [/mm] invariante Unterräume.

Bleiben die Unterräume der Dimension 1 zu untersuchen.

Sei U Unterraum der Dimension 1. Dann gibt es x,y [mm] \in [/mm] K mit [mm] U=<\vektor{x \\ y}>. [/mm]

Wenn nun U [mm] \phi-invariant [/mm] ist, so gibt es ein a [mm] \in [/mm] K mit

[mm] A\vektor{x \\ y}=a\vektor{x \\ y}. [/mm]

Dieses mußt Du ausschlachten und Beachtung der Eigenschaften von K.

Gruß v. Angela

Bezug
        
Bezug
Invariante Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Di 24.04.2007
Autor: Sina.S

Danke für Deine Hilfe. Du hast mir sehr geholfen und nun sieht die Welt ein wenig klarer aus. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]