www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Inverse Matrix
Inverse Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Mo 02.05.2011
Autor: diemelli1

Aufgabe
Gegeben sei die folgende Basis:
[mm] V=\{ v1= \vektor{1 \\ -5 \\ -3} , v2= \vektor{3 \\ 0 \\ 1} , v3= \vektor{1 \\ 2 \\ -3} \} \subseteq \IR^{3} [/mm]
Ein Vektor x [mm] \in \IR^{3} [/mm] bezüglich der Basis V kann geschrieben werden als Linearkombination der Basisvektoren:
x = [mm] \vektor{x1 \\ x2 \\ x3} [/mm] = [mm] \summe_{i=1}^{3} [/mm] xivi
Die Basisvektoren der Basis V können als Koordinatenachsen eines lokalen Koordinatensystems betrachtet werden. Entsprechend kann ein Vektor bezüglich der Basis V als Vektor in diesem lokalen Koordinatensystem interpretiert werden.
a) Sei v = [mm] \vektor{2 \\ 0 \\ 0 } [/mm] ein Vektor bezüglich der Basis V. Transformieren Sie v um in einen Vektor w [mm] \in \IR^{3} [/mm] bezüglich der natürlichen Basis  [mm] \{ \vektor{1 \\ 0 \\ 0 }, \vektor{0 \\ 1 \\ 0 }, \vektor{0 \\ 0 \\ 1 } \} \subseteq \IR^{3}. [/mm]

b) Finden Sie eine Matrix M, die allgemein einen Vektor v [mm] \in \IR^{3} [/mm] bzgl. der Basis V in einen Vektor w [mm] \in \IR^{3} [/mm] bzgl. der natürlichen Basis transfomiert.

c) Prüfen Sie, dass die inverse Matrix [mm] M^{-1} [/mm] Vektoren bezüglich der natürlichen Basis in Vektoren bezüglich V tranformiert, indem Sie den in Aufgabenteil a) ermittelten Vektor zurücktransformieren.

Hallo Matheraum,

es fällt mir schwer die Aufgabenstellung zu verstehen, bzw. zu verstehen was überhaupt verlangt ist.

Muss ich in Aufgabe a) die inverse Matrix von  [mm] V=\{ v1= \vektor{1 \\ -5 \\ -3} , v2= \vektor{3 \\ 0 \\ 1} , v3= \vektor{1 \\ 2 \\ -3} \} [/mm] berechnen?

das wäre dann in dem Fall [mm] V^{-1} [/mm] = [mm] \pmat{ \bruch{1}{35}& \bruch{-1}{7} & \bruch{-3}{35} \\ \bruch{3}{10} & 0 & \bruch{1}{10} \\ \bruch{1}{14} & \bruch{1}{7} & \bruch{-3}{14}} [/mm]

Wie muss ich weiter vorgehen? Ich bin für jeden Tipp froh.

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mo 02.05.2011
Autor: kamaleonti

Moin,
> Gegeben sei die folgende Basis:
>  [mm]V=\{ v1= \vektor{1 \\ -5 \\ -3} , v2= \vektor{3 \\ 0 \\ 1} , v3= \vektor{1 \\ 2 \\ -3} \} \subseteq \IR^{3}[/mm]
>  
> Ein Vektor x [mm]\in \IR^{3}[/mm] bezüglich der Basis V kann
> geschrieben werden als Linearkombination der
> Basisvektoren:
>  x = [mm]\vektor{x1 \\ x2 \\ x3}[/mm] = [mm]\summe_{i=1}^{3}[/mm] xivi
>  Die Basisvektoren der Basis V können als
> Koordinatenachsen eines lokalen Koordinatensystems
> betrachtet werden. Entsprechend kann ein Vektor bezüglich
> der Basis V als Vektor in diesem lokalen Koordinatensystem
> interpretiert werden.
>  a) Sei v = [mm]\vektor{2 \\ 0 \\ 0 }[/mm] ein Vektor bezüglich der
> Basis V. Transformieren Sie v um in einen Vektor w [mm]\in \IR^{3}[/mm]
> bezüglich der natürlichen Basis  [mm]\{ \vektor{1 \\ 0 \\ 0 }, \vektor{0 \\ 1 \\ 0 }, \vektor{0 \\ 0 \\ 1 } \} \subseteq \IR^{3}.[/mm]
>  
> b) Finden Sie eine Matrix M, die allgemein einen Vektor v
> [mm]\in \IR^{3}[/mm] bzgl. der Basis V in einen Vektor w [mm]\in \IR^{3}[/mm]
> bzgl. der natürlichen Basis transfomiert.
>  
> c) Prüfen Sie, dass die inverse Matrix [mm]M^{-1}[/mm] Vektoren
> bezüglich der natürlichen Basis in Vektoren bezüglich V
> tranformiert, indem Sie den in Aufgabenteil a) ermittelten
> Vektor zurücktransformieren.
>  Hallo Matheraum,
>  
> es fällt mir schwer die Aufgabenstellung zu verstehen,
> bzw. zu verstehen was überhaupt verlangt ist.
>  
> Muss ich in Aufgabe a) die inverse Matrix von  [mm]V=\{ v1= \vektor{1 \\ -5 \\ -3} , v2= \vektor{3 \\ 0 \\ 1} , v3= \vektor{1 \\ 2 \\ -3} \}[/mm]
> berechnen?

Nein, das ist erst in c) gefordert.
Bei a) überlege dir, dass die Matrix, die Koordinatenvektoren bezüglich der Basis V in Koordinatenvektoren bezüglich der Standardbasis E transformiert die Vektoren der Basis V als Spaltenvektoren haben muss:

[mm] T^V_E=\pmat{1&3&1\\-5&0&2\\-3&1&-3}. [/mm]
Dann ist [mm] \pmat{1&3&1\\-5&0&2\\-3&1&-3}\vektor{2\\0\\0}=\vektor{2\\-10\\-6}=2\vektor{1\\-5\\-3}=2v_1 [/mm]

>  
> das wäre dann in dem Fall [mm]V^{-1}[/mm] = [mm]\pmat{ \bruch{1}{35}& \bruch{-1}{7} & \bruch{-3}{35} \\ \bruch{3}{10} & 0 & \bruch{1}{10} \\ \bruch{1}{14} & \bruch{1}{7} & \bruch{-3}{14}}[/mm]

Für c) mache mit dieser Matrix die Probe, in dem du den Vektor [mm] \vektor{2\\-10\\-6} [/mm] zurücktransformierst.

>  
> Wie muss ich weiter vorgehen? Ich bin für jeden Tipp froh.

LG

Bezug
                
Bezug
Inverse Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Mo 02.05.2011
Autor: diemelli1

Moin,

danke für den Anstoß. :)

Bezug
        
Bezug
Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Di 03.05.2011
Autor: diemelli1

Irgendwie ist mir die Aufgabe doch noch nicht so wirklich klar. Wie muss ich in Aufgabe b) vorgehen? Ist in Aufgabe b) einfach nur nach [mm] V^{-1} [/mm] gefragt?


Bezug
                
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Mi 04.05.2011
Autor: angela.h.b.


> Irgendwie ist mir die Aufgabe doch noch nicht so wirklich
> klar. Wie muss ich in Aufgabe b) vorgehen? Ist in Aufgabe
> b) einfach nur nach [mm]V^{-1}[/mm] gefragt?

Hallo,

in Aufgabe b) ist die Matrix gefragt, welche Dir Vektoren, die in Koordinaten bzg. V gegeben sind, in solche bzgl der Standardbasis umwandelt.

Überlege Dir, daß dies die Matrix tut, die in ihren Spalten [mm] v_1, v_2, v_3 [/mm] stehen hat.


Nochmal ein Hinweis zu Aufgabe a)

Es ist [mm] \vektor{2\\0\\0}_{(V)}=2*v_1+0*v_2+0*v_3= [/mm] ...

das sollte man sich unbedingt mal klargemacht haben, bevor man mit Transformationsmatrizen rumwurschtelt.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]