www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInverse Matrix - A^-1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Inverse Matrix - A^-1
Inverse Matrix - A^-1 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix - A^-1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 18.01.2007
Autor: Mathe

Aufgabe
Bestimmen Sie durch elementare Umformungen jeweils die inverse Matrix:

A = [mm] \vmat{ 3 & 2 \\ 2 & 1 } [/mm]

Hallo,

ich kapiere die Bildung der investen Matrix nicht. Ich rechne meiner Meinung nach richtig aber das Lehrheft und mein Taschenrechner überstimmen mich immer ;-)

Die Aufgabenstellung:
Bestimmen Sie durch elementare Umformungen jeweils die inverse Matrix:

A = [mm] \vmat{ 3 & 2 \\ 2 & 1 } [/mm]

Meine Rechnung sieht folgendermaßen aus:

[mm] E_{12} \pmat{-1} \* \vmat{ 3 & 2 \\ 2 & 1 } \vmat{ 1 & 0 \\ 0 & 1 } [/mm]

[mm] E_{21} \pmat{-2} \* \vmat{ 1 & 1 \\ 2 & 1 } \vmat{ 1 & -1 \\ 0 & 1 } [/mm]

[mm] E_{12} \pmat{1} \* \vmat{ 1 & 1 \\ 0 & -1 } \vmat{ 1 & -1 \\ -2 & -1 } [/mm]

[mm] E_{22} \pmat{-1} \* \vmat{ 1 & 0 \\ 0 & -1 } \vmat{ -1 & -2 \\ -2 & -1 } [/mm]

[mm] \vmat{ 1 & 0 \\ 0 & 1 } \vmat{ -1 & -2 \\ 2 & 1 } [/mm]


Die Musterlösung, dessen Ergebnis sich mit dem Taschenrechner deckt, lautet natürlich wie folgt:

[mm] E_{22} \pmat{-3} \* \vmat{ 3 & 2 \\ 2 & 1 } \vmat{ 1 & 0 \\ 0 & 1 } [/mm]

[mm] E_{11} \pmat{2} \* \vmat{ 3 & 2 \\ -6 & -3 } \vmat{ 1 & 0 \\ 0 & -3 } [/mm]

[mm] E_{21} \pmat{1} \* \vmat{ 6 & 4 \\ -6 & -3 } \vmat{ 2 & 0 \\ 0 & -3 } [/mm]

[mm] E_{12} \pmat{-4} \* \vmat{ 6 & 4 \\ 0 & 1 } \vmat{ 2 & 0 \\ 2 & -3 } [/mm]

[mm] E_{11} \pmat{1/6} \* \vmat{ 6 & 0 \\ 0 & 1 } \vmat{ -6 & 12 \\ 2 & -3 } [/mm]

[mm] \vmat{ 1 & 0 \\ 0 & 1 } \vmat{ -1 & 2 \\ 2 & -3 } [/mm]


Ich kann noch ein paar weitere Matrizen aufzählen, welche ich wohl "falsch" rechne. Leider finde ich meinen Fehler nicht.

Wer hat mir den Invers-Matritzen-Tipp?

        
Bezug
Inverse Matrix - A^-1: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Do 18.01.2007
Autor: schachuzipus


> Bestimmen Sie durch elementare Umformungen jeweils die
> inverse Matrix:
>  
> A = [mm]\vmat{ 3 & 2 \\ 2 & 1 }[/mm]
>  Hallo,
>  
> ich kapiere die Bildung der investen Matrix nicht. Ich
> rechne meiner Meinung nach richtig aber das Lehrheft und
> mein Taschenrechner überstimmen mich immer ;-)
>  
> Die Aufgabenstellung:
>  Bestimmen Sie durch elementare Umformungen jeweils die
> inverse Matrix:
>  
> A = [mm]\vmat{ 3 & 2 \\ 2 & 1 }[/mm]
>  
> Meine Rechnung sieht folgendermaßen aus:
>  
> [mm]E_{12} \pmat{-1} \* \vmat{ 3 & 2 \\ 2 & 1 } \vmat{ 1 & 0 \\ 0 & 1 }[/mm]
>  
> [mm]E_{21} \pmat{-2} \* \vmat{ 1 & 1 \\ 2 & 1 } \vmat{ 1 & -1 \\ 0 & 1 }[/mm]
>  
> [mm]E_{12} \pmat{1} \* \vmat{ 1 & 1 \\ 0 & -1 } \vmat{ 1 & -1 \\ -2 & 1 }[/mm]
>  
> [mm]E_{22} \pmat{-1} \* \vmat{ 1 & 0 \\ 0 & -1 } \vmat{ -1 & -2 \\ -2 & -1 }[/mm]
>  
> [mm]\vmat{ 1 & 0 \\ 0 & 1 } \vmat{ -1 & -2 \\ 2 & 1 }[/mm]
>  
>
> Die Musterlösung, dessen Ergebnis sich mit dem
> Taschenrechner deckt, lautet natürlich wie folgt:
>  
> [mm]E_{22} \pmat{-3} \* \vmat{ 3 & 2 \\ 2 & 1 } \vmat{ 1 & 0 \\ 0 & 1 }[/mm]
>  
> [mm]E_{11} \pmat{2} \* \vmat{ 3 & 2 \\ -6 & -3 } \vmat{ 1 & 0 \\ 0 & -3 }[/mm]
>  
> [mm]E_{21} \pmat{1} \* \vmat{ 6 & 4 \\ -6 & -3 } \vmat{ 2 & 0 \\ 0 & -3 }[/mm]
>  
> [mm]E_{12} \pmat{-4} \* \vmat{ 6 & 4 \\ 0 & 1 } \vmat{ 2 & 0 \\ 2 & -3 }[/mm]
>  
> [mm]E_{11} \pmat{1/6} \* \vmat{ 6 & 0 \\ 0 & 1 } \vmat{ -6 & 12 \\ 2 & -3 }[/mm]
>  
> [mm]\vmat{ 1 & 0 \\ 0 & 1 } \vmat{ -1 & 2 \\ 2 & -3 }[/mm]
>  
>
> Ich kann noch ein paar weitere Matrizen aufzählen, welche
> ich wohl "falsch" rechne. Leider finde ich meinen Fehler
> nicht.
>  
> Wer hat mir den Invers-Matritzen-Tipp?

Hallo,

du hast dich bei der zweiten Umformung verrechnet.
Der Eintrag [mm] a_{22} [/mm] der umgeformten Einheitsmatrix ist = 3 , denn Das -2fache der 1. Zeile zur 2. Zeile addiert ergibt: (-2)(-1)+1=3 und nicht 1 ;)


Also [mm] \vmat{ 1 & 1 \\ 0 & -1 } \vmat{ 1 & -1 \\ -2 & 3 }[/mm]

Probier's von hier aus weiter. Es ist nicht mehr weit ;)

Welche Umformungen in welcher Reihenfolge du machst, ist letztlich egal, solange du nur die Matrix A zur Einheitsmatrix umformen kannst. Da gibt es eigentlich kein "richtig" oder "falsch", höchstens effizientere und weniger effiziente Wege.


Gruß


schachuzipus

Bezug
                
Bezug
Inverse Matrix - A^-1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Fr 19.01.2007
Autor: Mathe

Hi,

vielen Dank für deine Richtigstellung. Jetzt habe ich die anderen drei Aufgaben erneut durchgerechnet und auf Rechenfehler geachtet und siehe da, so lange man keine Rechenfehler macht, kann man wirklich rechnen wie man will - es kommt wohl immer das "richtige" Ergebnis raus ;-)

Vielen Dank nochmals!

Schönen Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]