www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInversen-Bestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Inversen-Bestimmung
Inversen-Bestimmung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inversen-Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Do 17.05.2012
Autor: dudu93

Hallo!
Ich habe eine kurze zum Vorgehen der Inversen-Bestimmung.

Mit der allgemeinen Bestimmung von Inversen einer einzelnen Matrix habe ich keine Probleme.

Jetzt soll ich z.B. [mm] (A-B)^1 [/mm] bestimmen. Meine Frage: Muss ich zuerst die beiden Matrizen voneinander subtrahieren und dann die Inverse bestimmen oder benötigt man erstmal die beiden Inversen von A und B, um diese dann voneinander zu subtrahieren?

LG

        
Bezug
Inversen-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 17.05.2012
Autor: MathePower

Hallo dudu93,


> Hallo!
>  Ich habe eine kurze zum Vorgehen der Inversen-Bestimmung.
>  
> Mit der allgemeinen Bestimmung von Inversen einer einzelnen
> Matrix habe ich keine Probleme.
>  
> Jetzt soll ich z.B. [mm](A-B)^1[/mm] bestimmen. Meine Frage: Muss
> ich zuerst die beiden Matrizen voneinander subtrahieren und
> dann die Inverse bestimmen oder benötigt man erstmal die
> beiden Inversen von A und B, um diese dann voneinander zu
> subtrahieren?
>  


Zuerst subtrahieren, dann die Inverse bilden.


> LG


Gruss
MathePower

Bezug
        
Bezug
Inversen-Bestimmung: Beispiel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Do 17.05.2012
Autor: barsch

Hallo,

siehe zum Beispiel

[mm]A=\pmat{ 2 & 0 \\ 0 & 2 }, \ B=\pmat{ 1 & 0 \\ 0 & 1 } [/mm], so ist [mm](A-B)^{-1}\not=A^{-1}-B^{-1}[/mm].

Gruß
barsch


Bezug
                
Bezug
Inversen-Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Do 17.05.2012
Autor: dudu93

Alles klar, danke!

Bei (AB)^-1 benötigt man aber zuerst die jeweiligen Inversen, bevor man multipliziert, oder?

LG

Bezug
                        
Bezug
Inversen-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 17.05.2012
Autor: barsch

Hallo,


> Alles klar, danke!
>  
> Bei (AB)^-1 benötigt man aber zuerst die jeweiligen
> Inversen, bevor man multipliziert, oder?

das ist egal. Es gilt:

[mm](A*B)^{-1}=B^{-1}*A^{-1}[/mm]

>  
> LG

Gruß
barsch


Bezug
        
Bezug
Inversen-Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Do 17.05.2012
Autor: dudu93

Vielen Dank!

Eine kurze Frage habe ich noch. Wenn eine Matrix ich (-A) bestimmen soll, dann kehrt man die Vorzeichen von allen Elementen in der Matrix um, oder?

LG

Bezug
                
Bezug
Inversen-Bestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Do 17.05.2012
Autor: MathePower

Hallo dudu93,


> Vielen Dank!
>  
> Eine kurze Frage habe ich noch. Wenn eine Matrix ich (-A)
> bestimmen soll, dann kehrt man die Vorzeichen von allen
> Elementen in der Matrix um, oder?
>


Genau.


> LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]