www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperInverses Poly in Q[x]/<x^3-1>
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Inverses Poly in Q[x]/<x^3-1>
Inverses Poly in Q[x]/<x^3-1> < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverses Poly in Q[x]/<x^3-1>: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mo 02.02.2009
Autor: okozo

Aufgabe
f = [mm] x^2 [/mm] + 1
R = Q[x] / [mm]
Prüfen Sie, ob das gegebene Element f ein multiplikatives Inverses in dem jeweiligen Ring R hat und bestimmen Sie dieses gegebenenfalls.

Kann ich hier einfach sagen:
[f besitzt keine Nullstelle in Q] und [deg(f) = 2]
[mm] \Rightarrow [/mm] f ist irreduzibel in Q[x]
[mm] \Rightarrow [/mm] f ist keine Einheit in Q[x]
[mm] \Rightarrow [/mm] f besitzt kein multiplikatives Inverses in Q[x]
[mm] \Rightarrow [/mm] f besitzt kein multiplikatives Inverses in Q[x] / [mm] ?
Oder geht das schief wegen modulo?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverses Poly in Q[x]/<x^3-1>: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mo 02.02.2009
Autor: SEcki


> f = [mm]x^2[/mm] + 1
>  R = Q[x] / [mm]

...

>  [mm]\Rightarrow[/mm] f besitzt kein multiplikatives Inverses in
> Q[x]

Bis hier her richtig.

>  [mm]\Rightarrow[/mm] f besitzt kein multiplikatives Inverses in
> Q[x] / [mm]

Warum sollte das stimmen? Es stimmt hier auch nicht, btw.

>  ?
>  Oder geht das schief wegen modulo?

Quasi ja - wie sieht denn er "Modulo-Raum" genau aus? Was bedeutet es in ihm, ein Inverses zu haben? Was ist denn eine Basis dieses Raumes? Hast du nun Ideen?

SEcki

Bezug
                
Bezug
Inverses Poly in Q[x]/<x^3-1>: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 10.02.2009
Autor: willikufalt

Wie berechne ich denn jetzt dieses Inverse zu [mm] x^{2}+1? [/mm]

Müsste doch per Polynomdivision gehen, oder?

[mm] \bruch{1}{x^{2}+1} [/mm]
[mm] =\bruch{x^{3}}{x^{2}+1} [/mm]

Das führt aber bei mir irgendwie zu nix...

Bezug
                        
Bezug
Inverses Poly in Q[x]/<x^3-1>: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 10.02.2009
Autor: SEcki


> Wie berechne ich denn jetzt dieses Inverse zu [mm]x^{2}+1?[/mm]
>  
> Müsste doch per Polynomdivision gehen, oder?

Hm, eher nicht.

Der Modulraum wird von den "Elementen" [m]1,x,x^2[/m] erzeugt. Setze also an [m](x^2+1)*(a*x^2+b*x+1)=1[/m] und nutze [m]x^3=1[/m] aus- Alternativ kann man mit Division mit Rest Polynome f, g bestimmen mit [m]f*(x^3-1)+g*(x^2+1)=1[/m] - dann ist die Projektion von f das Inverse.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]