www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperInverses einer 2x2 Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Inverses einer 2x2 Matrix
Inverses einer 2x2 Matrix < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverses einer 2x2 Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Do 13.11.2008
Autor: Wastelander

Aufgabe
Zeigen Sie, dass die Teilmenge
[mm] \begin{matrix} M &:=& \begin{Bmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} &|& a^2+b^2>0, & a,b \in \IR \end{Bmatrix} & \subset & Mat(2x2, \IR) \end{matrix} [/mm]
die Menge der Matrizen Mat(2x2, [mm] \IR) [/mm] zusammen mit der Multiplikation "*" definiert durch

[mm] \begin{matrix} &*:& M \times M & \to & M\\ && \begin{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} &,& \begin{pmatrix} a' & b' \\ -b' & a' \end{pmatrix} \end{pmatrix} & \mapsto & \begin{pmatrix} a & b \\ -b & a \end{pmatrix} * \begin{pmatrix} a' & b' \\ -b' & a' \end{pmatrix} := \begin{pmatrix} a*a'-b*b' & a*b'+b*a' \\ -(a*b'+b*a') & a*a'-b*b' \end{pmatrix} \end{matrix} [/mm]
eine abelsche Gruppe bildet.

Ich konnte alles außer die Existenz eines Inversen zeigen. Natürlich stelle ich ein Gleichungssystem auf, aber ich kriege keine funktionierenden Werte heraus.


[mm] \begin{pmatrix} a & b\\ -b & a \end{pmatrix} * \begin{pmatrix} c & d\\ -d & c \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/mm]

[mm] \begin{matrix} I & a*c-b*d &=& 1\\ II & a*d + b*c &=& 0\\ III & -b*c-a*d &=& 0\\ IV & -b*d+a*c &=& 1 \end{matrix} [/mm]

Kann mir das mal bitte einer vorrechnen? Ich habe jetzt stundenlang schon Blätter vollgeschmiert (4 DIN A4-Seiten) und komme auf keine vernünftige Lösung. Wäre überaus dankbar.

LG
~W

        
Bezug
Inverses einer 2x2 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Do 13.11.2008
Autor: schachuzipus

Hallo Wastelander,

> Zeigen Sie, dass die Teilmenge
>  [mm] \begin{matrix} M &:=& \begin{Bmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} &|& a^2+b^2>0, & a,b \in \IR \end{Bmatrix} & \subset & Mat(2x2, \IR) \end{matrix} [/mm]
>  
> die Menge der Matrizen Mat(2x2, [mm]\IR)[/mm] zusammen mit der
> Multiplikation "*" definiert durch
>  
> [mm] \begin{matrix} &*:& M \times M & \to & M\\ && \begin{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} &,& \begin{pmatrix} a' & b' \\ -b' & a' \end{pmatrix} \end{pmatrix} & \mapsto & \begin{pmatrix} a & b \\ -b & a \end{pmatrix} * \begin{pmatrix} a' & b' \\ -b' & a' \end{pmatrix} := \begin{pmatrix} a*a'-b*b' & a*b'+b*a' \\ -(a*b'+b*a') & a*a'-b*b' \end{pmatrix} \end{matrix} [/mm]
>  
> eine abelsche Gruppe bildet.
>  Ich konnte alles außer die Existenz eines Inversen zeigen.
> Natürlich stelle ich ein Gleichungssystem auf, aber ich
> kriege keine funktionierenden Werte heraus.
>  
>
> [mm] \begin{pmatrix} a & b\\ -b & a \end{pmatrix} * \begin{pmatrix} c & d\\ -d & c \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/mm]
>  
> [mm] \begin{matrix} I & a*c-b*d &=& 1\\ II & a*d + b*c &=& 0\\ III & -b*c-a*d &=& 0\\ IV & -b*d+a*c &=& 1 \end{matrix} [/mm]
>  
> Kann mir das mal bitte einer vorrechnen? Ich habe jetzt
> stundenlang schon Blätter vollgeschmiert (4 DIN A4-Seiten)
> und komme auf keine vernünftige Lösung. Wäre überaus
> dankbar.

Bedingung (I) und (II) reichen aus, um c und d zu bestimmen:

(I) $ac-bd=1$
(II) $bc+ad=0$

Hier addieren wir das -b-fache der ersten Zeile auf das a-fache der zweiten Zeile und bekommen:

(I') $ac-bd=1$
(II') $a^2d+b^2d=-b$

(II') weiter umformen: [mm] $(a^2+b^2)\cdot{}d=-b [/mm] \ \ [mm] \mid :(a^2+b^2)\neq [/mm] 0$ nach Vor.

[mm] $\Rightarrow \red{d=-\frac{b}{a^2+b^2}}$ [/mm]

Das nun in (I') oder (I) einsetzen:

[mm] $ac-b\red{d}=1\Rightarrow ac=1+b\red{d}=1-\frac{b^2}{a^2+b^2}=\frac{a^2+b^2-b^2}{a^2+b^2}=\frac{a^2}{a^2+b^2}\Rightarrow c=\frac{a}{a^2+b^2}$ [/mm]


> LG
>  ~W


Gruß

schachuzipus

Bezug
                
Bezug
Inverses einer 2x2 Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:49 Do 13.11.2008
Autor: Wastelander

Vielen vielen Dank!

Ich hatte bereits etwas Ähnliches gehabt, aber weil mein Hirn schon ganz weichgespült war schlichen sich dann beim Einsetzen und Überprüfen Rechenfehler ein.

Tausend Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]