www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesInvertierbar, Inverse,Injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Invertierbar, Inverse,Injektiv
Invertierbar, Inverse,Injektiv < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbar, Inverse,Injektiv: Beweis verstehen
Status: (Frage) beantwortet Status 
Datum: 11:01 Fr 17.08.2012
Autor: quasimo

Aufgabe
Seien A, A' [mm] \in M_{n \times n} (\IK) [/mm]
Und A' A = [mm] I_n [/mm]
So folgt A invertierbar, [mm] A^{-1} [/mm] = A'

Hallo
Beweis im Skriptum:
[mm] \psi_A [/mm] : [mm] \IK^n [/mm] -> [mm] \IK^n [/mm]
[mm] \psi_{A'} [/mm] : [mm] \IK^n [/mm] -> [mm] \IK^n [/mm]
[mm] \psi_{A'} \circ \psi_A [/mm] = [mm] \psi_{A'A} [/mm] = [mm] \psi_{I_n} [/mm] = [mm] id_{\IK^n} [/mm]
=> [mm] \psi_A [/mm] muss injektiv sein
=> wegen Dimensionsgründen (Lemma) [mm] \psi_A [/mm] Isomorphismus => A invertierbar.

Frage:
Mir ist nicht klar warum folgt dass [mm] \psi_A [/mm] injektiv ist??

Alles andere ist klar.
LG

        
Bezug
Invertierbar, Inverse,Injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Fr 17.08.2012
Autor: fred97


> Seien A, A' [mm]\in M_{n \times n} (\IK)[/mm]
>  Und A' A = [mm]I_n[/mm]
> So folgt A invertierbar, [mm]A^{-1}[/mm] = A'
>  Hallo
>  Beweis im Skriptum:
>  [mm]\psi_A[/mm] : [mm]\IK^n[/mm] -> [mm]\IK^n[/mm]

>  [mm]\psi_{A'}[/mm] : [mm]\IK^n[/mm] -> [mm]\IK^n[/mm]

>  [mm]\psi_{A'} \circ \psi_A[/mm] = [mm]\psi_{A'A}[/mm] = [mm]\psi_{I_n}[/mm] =
> [mm]id_{\IK^n}[/mm]
>  => [mm]\psi_A[/mm] muss injektiv sein

>  => wegen Dimensionsgründen (Lemma) [mm]\psi_A[/mm] Isomorphismus

> => A invertierbar.
>  
> Frage:
>  Mir ist nicht klar warum folgt dass [mm]\psi_A[/mm] injektiv ist??

Sei x [mm] \in \IK^n [/mm] und [mm] \psi_A(x)=0. [/mm] Dann ist

    x= [mm] id_{\IK^n}(x)= \psi_{A'}(\psi_A(x))= \psi_{A'}(0)=0. [/mm]

FRED

>  
> Alles andere ist klar.
>  LG


Bezug
                
Bezug
Invertierbar, Inverse,Injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Fr 17.08.2012
Autor: quasimo

Hallo,
Danke für die Antwort.
Habe es verstanden,

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]