www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInvertierbare Matrix (Jordan)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Invertierbare Matrix (Jordan)
Invertierbare Matrix (Jordan) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrix (Jordan): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Di 23.06.2015
Autor: qwertz235

Aufgabe
Seien
A= [mm] \pmat{ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 } [/mm] und [mm] B=\pmat{ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1 } \in \IR^{4,4} [/mm] gegeben.
Zeigen Sie, dass A und B ähnlich sind und bestimmen Sie eine invertierbare Matrix S, sodass [mm] A=S^{-1}BS [/mm] ist.
Hinweis: A und B sind beide nilpotent mit Index 4.


Nun zu meiner Lösung:
Da A und B beide nilpotent mit Index 4 sind, weiß ich aus der Vorlesung, dass es eine invertierbare Matrix U und eine invertierbare Matrix T gibt, sodass [mm] U^{-1}AU=J_{4} [/mm] und [mm] T^{-1}BT=J_{4} [/mm] gilt, wobei [mm] J_{4}= \pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }. [/mm] Damit kann ich beide Gleichungen gleichsetzen und erhalte die invertierbare Matrix S = [mm] TU^{-1}. [/mm]
Nun möchte ich gerne zunächst U bestimmen. Dazu weiß ich wieder aus der Vorlesung, dass die Spalten von U eine Jordan-Kette von A zum Eigenwert 0 der Länge 4 bilden.
Ich habe mir also einen Vektor [mm] u_{1} [/mm] so gewählt, dass [mm] Au_{1}=0 [/mm] gilt (nach Definition der Jordan-Kette). Sei also [mm] u_{1}=\vektor{1 \\ 1 \\ 1 \\ 1}. [/mm] Mit der Gleichung [mm] u_{1}=Au_{2}=A^{2}u_{3}=A^{3}u_{4} [/mm] habe ich nacheinander die Vektoren [mm] u_{2}, u_{3} [/mm] und [mm] u_{4} [/mm] bestimmt und [mm] u_{2}=\vektor{2 \\ 2 \\ 2 \\ 1}, u_{3}=\vektor{2 \\ 2 \\ 1 \\ 1} [/mm] und [mm] u_{4}=\vektor{2 \\ 1 \\ 1 \\ 1} [/mm] als eine Möglichkeit erhalten.
Damit ist dann [mm] U=\pmat{ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 } [/mm] und [mm] U^{-1}=\pmat{ -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 }. [/mm]
Nun erhalte ich jedoch [mm] U^{-1}AU=\pmat{ 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }\not=J_{4}. [/mm]
Was mache ich da falsch?

Viele Grüße


Edit: Ich habe meinen Fehler bzw. den richtigen Weg gefunden. Ich habe mir einen Vektor [mm] u_{4} [/mm] aus dem Kern von [mm] A^{4} [/mm] genommen, der nicht im Kern von [mm] A^{3} [/mm] enthalten ist und dann damit die Jordankette gebildet.

        
Bezug
Invertierbare Matrix (Jordan): Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 24.06.2015
Autor: MathePower

Hallo qwertz235,

> Seien
> A= [mm]\pmat{ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 }[/mm]
> und [mm]B=\pmat{ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1 } \in \IR^{4,4}[/mm]
> gegeben.
> Zeigen Sie, dass A und B ähnlich sind und bestimmen Sie
> eine invertierbare Matrix S, sodass [mm]A=S^{-1}BS[/mm] ist.
> Hinweis: A und B sind beide nilpotent mit Index 4.
>  
> Nun zu meiner Lösung:
> Da A und B beide nilpotent mit Index 4 sind, weiß ich aus
> der Vorlesung, dass es eine invertierbare Matrix U und eine
> invertierbare Matrix T gibt, sodass [mm]U^{-1}AU=J_{4}[/mm] und
> [mm]T^{-1}BT=J_{4}[/mm] gilt, wobei [mm]J_{4}= \pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }.[/mm]
> Damit kann ich beide Gleichungen gleichsetzen und erhalte
> die invertierbare Matrix S = [mm]TU^{-1}.[/mm]
> Nun möchte ich gerne zunächst U bestimmen. Dazu weiß ich
> wieder aus der Vorlesung, dass die Spalten von U eine
> Jordan-Kette von A zum Eigenwert 0 der Länge 4 bilden.
> Ich habe mir also einen Vektor [mm]u_{1}[/mm] so gewählt, dass
> [mm]Au_{1}=0[/mm] gilt (nach Definition der Jordan-Kette). Sei also
> [mm]u_{1}=\vektor{1 \\ 1 \\ 1 \\ 1}.[/mm] Mit der Gleichung
> [mm]u_{1}=Au_{2}=A^{2}u_{3}=A^{3}u_{4}[/mm] habe ich nacheinander
> die Vektoren [mm]u_{2}, u_{3}[/mm] und [mm]u_{4}[/mm] bestimmt und
> [mm]u_{2}=\vektor{2 \\ 2 \\ 2 \\ 1}, u_{3}=\vektor{2 \\ 2 \\ 1 \\ 1}[/mm]
> und [mm]u_{4}=\vektor{2 \\ 1 \\ 1 \\ 1}[/mm] als eine Möglichkeit
> erhalten.
> Damit ist dann [mm]U=\pmat{ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 }[/mm]
> und [mm]U^{-1}=\pmat{ -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 }.[/mm]
> Nun erhalte ich jedoch [mm]U^{-1}AU=\pmat{ 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }\not=J_{4}.[/mm]
>  
> Was mache ich da falsch?
>  


Die Vektoren [mm]u_{3}[/mm] und [mm]u_{4}[/mm] stimmen nicht.


> Viele Grüße
>  
> Edit: Ich habe meinen Fehler bzw. den richtigen Weg
> gefunden. Ich habe mir einen Vektor [mm]u_{4}[/mm] aus dem Kern von
> [mm]A^{4}[/mm] genommen, der nicht im Kern von [mm]A^{3}[/mm] enthalten ist
> und dann damit die Jordankette gebildet.  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]