www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungInvertierte Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Invertierte Matrix
Invertierte Matrix < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Sa 06.11.2010
Autor: Kuriger

Hallo

Diese Frage ist hier wohl doch besser aufgehoben.



[mm] \delta_{10} [/mm] = [mm] \delta_{20} [/mm] = -0.003
[mm] \delta_{11} [/mm] = [mm] \delta_{22} [/mm] = -0.000033333
[mm] \delta_{12} [/mm] = [mm] \delta_{21} [/mm] = 0.00001666666

[mm] \pmat{ \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22}} [/mm] * [mm] \vektor{x_1 \\ x_2} [/mm] = [mm] \vektor{\delta_{10} \\ \delta_{20}} [/mm]

gemäss Maxwell [mm] \delta_{12} [/mm] = [mm] \delta_{21} [/mm]

[mm] \vektor{x_1 \\ x_2} [/mm] =  [mm] \vektor{\delta_{10} \\ \delta_{20}} [/mm] * [mm] A^{-1} [/mm]

[mm] \vektor{x_1 \\ x_2} [/mm] =  [mm] \vektor{\delta_{10} \\ \delta_{20}} [/mm] * [mm] \bruch{1}{D} \pmat{ \delta_{22} & - \delta_{12} \\ -\delta_{21} & \delta_{11}} [/mm]


A = [mm] \pmat{ 0.00003 & 0.000016 \\ 0. 000016 & 0.00003} [/mm]


[mm] A^{-1} [/mm] = [mm] \pmat{ 40 000 & -20 000 \\ -20 000 & 40 000} [/mm]

[mm] \vektor{x_1 \\ x_2} [/mm] = - [mm] \vektor{-0.003 \\ -0.003} [/mm] *  [mm] \pmat{ 40 000 & -20 000 \\ -20 000 & 40 000} [/mm]

Woher kommt das Minus? (- [mm] \vektor{-0.003 \\ -0.003}) [/mm]

[mm] x_1 [/mm] = -(-0.003 * 40 000 + 0.003 * 20 000) = 60

[mm] x_2 [/mm] = -(+0.003 * (-20 000) - 0.003 * 40 000) = 60

Mir ist das wegen dem Minus nicht klar...Kann mir jemandf helfen?

Danke, gruss Kuriger

        
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Sa 06.11.2010
Autor: ullim

Hi,

mit [mm] A=\pmat{ \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22}} [/mm] und

[mm] b=\vektor{\delta_{10} \\ \delta_{20}} [/mm]

berechnet sich die Lösung A*x=b zu [mm] x=A^{-1}*b [/mm] (nicht wie bei Dir [mm] b*A^{-1}, [/mm] das Produkt ist gar nicht definiert)

[mm] A^{-1}=\br{1}{Det(A)}*\pmat{ \delta_{22} & -\delta_{12} \\ -\delta_{21} & \delta_{11}} [/mm] mit

[mm] Det(A)=\delta_{11}*\delta_{22}-\delta_{12}*\delta_{21} [/mm]

Mit den angegebenen Werten erhält man

[mm] A^{-1}=\pmat{ -40000 & -20000 \\ -20000 & -40000} [/mm] (ich denke da ist bei Dir der Vorzeichenfehler)

Jetzt noch [mm] A^{-1}*b [/mm] ausrechnen und Du bist fertig.

Und Du solltest daran denken, dass Produkte der Form [mm] \vektor{... \\ ...}*\pmat{ ... & ... \\ ... & ...} [/mm] nicht definiert sind.





Bezug
        
Bezug
Invertierte Matrix: Taschenrechner defekt?
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 08.11.2010
Autor: Kuriger

Hallo

irgendwie bleibt das VOrzeichenproblem...sorry


A = [mm]\pmat{ 0.00003 & 0.000016 \\ 0. 000016 & 0.00003}[/mm]

[mm]A^{-1}[/mm] = [mm]\pmat{ 40 000 & -20 000 \\ -20 000 & 40 000}[/mm]

Stimtm denn diese invertierte Matrize nicht?

Danke, gruss Kuriger


Bezug
                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 08.11.2010
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
> irgendwie bleibt das VOrzeichenproblem...sorry
>  
>
> A = [mm]\pmat{ 0.00003 & 0.000016 \\ 0. 000016 & 0.00003}[/mm]


Die Matrix lautet doch, gemäß den Definitionen der [mm]\delta_{ii}, \ i=1,2[/mm] so:

[mm]A =\pmat{ \red {-}0.0000\overline{3} & 0.00001\overline{6} \\ 0. 00001\overline{6} & \red{-}0.0000\overline{3}}[/mm]


>  
> [mm]A^{-1}[/mm] = [mm]\pmat{ 40 000 & -20 000 \\ -20 000 & 40 000}[/mm]
>  
> Stimtm denn diese invertierte Matrize nicht?
>  
> Danke, gruss Kuriger

>


Gruss
MathePower  

Bezug
                        
Bezug
Invertierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 08.11.2010
Autor: Kuriger

Hallo Mathepower

Das Beispiel passt jetzt...

Doch ich habe folgende Werte

A = [mm] \pmat{ 7 & 4.5 \\ 4.5 & 9.75 } [/mm]
[mm] A^{-1} [/mm] = [mm] \pmat{ 0.2031 & -0.093\\ -0.093 & 0.1458 } [/mm]

b = [mm] \vektor{-615 \\ -1080} [/mm]

[mm] x=A^{-1}\cdot{}b [/mm]

[mm] \vektor{x_1 \\ x_2} [/mm] = [mm] \pmat{ 0.2031 & -0.093\\ -0.093 & 0.1458 } [/mm] * [mm] \vektor{-615 \\ -1080} [/mm]
[mm] x_1 [/mm] = 0.2031*(-615) -0.093*(-1080) = -24.4665


Was ist da los...so eifnach aber ich check das einfach nicht.

Schaut mal hier: http://www.bau.hs-wismar.de/dallmann/Kapitel2.pdf Seite 11 rechts...das statische braucht euch nicht zu interessieren

Gruss Kuriger



Bezug
                                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 08.11.2010
Autor: MathePower

Hallo Kuriger,

> Hallo Mathepower
>  
> Das Beispiel passt jetzt...
>  
> Doch ich habe folgende Werte
>  
> A = [mm]\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }[/mm]
>  [mm]A^{-1}[/mm] = [mm]\pmat{ 0.2031 & -0.093\\ -0.093 & 0.1458 }[/mm]
>  
> b = [mm]\vektor{-615 \\ -1080}[/mm]
>  
> [mm]x=A^{-1}\cdot{}b[/mm]
>  
> [mm]\vektor{x_1 \\ x_2}[/mm] = [mm]\pmat{ 0.2031 & -0.093\\ -0.093 & 0.1458 }[/mm]
> * [mm]\vektor{-615 \\ -1080}[/mm]
>  [mm]x_1[/mm] = 0.2031*(-615)
> -0.093*(-1080) = -24.4665
>  
>
> Was ist da los...so eifnach aber ich check das einfach
> nicht.


In der invertierten Matrix stehen gerundete Werte,
die zwangsläufig zu Fehlern im Ergebnis führen.


>  
> Schaut mal hier:
> http://www.bau.hs-wismar.de/dallmann/Kapitel2.pdf Seite 11
> rechts...das statische braucht euch nicht zu interessieren
>  
> Gruss Kuriger
>  


Gruss
MathePower  

Bezug
                                        
Bezug
Invertierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:53 Di 09.11.2010
Autor: Kuriger

Hallo Mathepower


Neben der Abweichung, irritiert mich besonders das Vorzeichen. Ist ja gerade umgekehrt...


Gruss Kuriger

Bezug
                                                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 Di 09.11.2010
Autor: angela.h.b.


> Hallo Mathepower
>  
>
> Neben der Abweichung, irritiert mich besonders das
> Vorzeichen. Ist ja gerade umgekehrt...
>  

Hallo,

ich hab' beim Drüberschauen keinen Fehler entdecken können.

Den Link habe ich mir aus Neugierde mal angesehen, aber ich habe überhaupt nicht erkannt, wo Dein Gleichungssystem herkommen soll.
Ich hab' die Zahlen Deiner Ausgangsgleichung nirgendwo gesehen!

Vielleicht hast Du beim Aufstellen des Gleichungssystems schon einen Fehler gemacht?

Da Dir irgendwelche Minuszeichen nicht schmecken, könnte ich mir vorstellen, daß Du irgendwie sowas hattest:

[mm] $A\vec{x}+\vektor{-615\\-1080}=\vec{0}$ [/mm]

<==>

[mm] A\vec{x}=\red{-}\vektor{-615\\-1080}=\vektor{615\\1080}. [/mm]

Aber, wie gesagt, in dem, was hier im Thread gepostet wurde, erscheint mir alles stimmig.

Gruß v. Angela


P.S.: Ich hatte Dir doch kürzlich geschrieben, daß es "Matrix" heißt. Und nun tust Du es schon wieder... Warum bloß?



>
> Gruss Kuriger


Bezug
                                                        
Bezug
Invertierte Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:57 Di 09.11.2010
Autor: Kuriger

Ach....Ja habe anfänglich daran gedacht, Matrizen zus chreiben, aber offensichtlich habe ich diesen Schreibfehler derart verinnerlicht, dass das automatisch kommt...muss mir besonders acht darauf geben

Gruss Kuriger

Bezug
                                                        
Bezug
Invertierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:04 Di 09.11.2010
Autor: Kuriger

Hallo Angela

Ja wird wohl ein Fehler beim Aufstellen des Gleichungssystems sein.

Siehst du denn auf Seite 11 nicht die Zahlen? Es steht: • Gleichungssystem (Verformungsbedingungen) und Lösung, dort steht:

[mm] \pmat{ 7 & 4.5 \\ 4.5 & 9.75 } [/mm] * [mm] \vektor{x_1 \\ x_2} [/mm] + [mm] \vektor{-615 \\ -1080} [/mm] = [mm] \vektor{0 \\ 0} \to \vektor{x_1 \\ x_2} [/mm] = [mm] \vektor{23.67 \\ 99.84} [/mm]

gruss Kuriger


Bezug
                                                                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Di 09.11.2010
Autor: Steffi21

Hallo, dieses Gleichungssystem steht auf Seite 21, es gehört zur Aufgabe 2.14, du bekommst

(1) [mm] 7*x_1+4,5*x_2-615=0 [/mm]
(2) [mm] 4,5*x_1+9,75*x_2-1080=0 [/mm]

(1) Multiplikation mit -4,5
(2) Multiplikation mit 7

(1) [mm] -31,5x_1-20,25x_2+2767,5=0 [/mm]
(2) [mm] 31,5x_1+68,25x_2-7560=0 [/mm]

Addition der Gleichungen

[mm] 48x_2-4792,5=0 [/mm]

[mm] 96x_2=9585 [/mm]

[mm] x_2=\bruch{9585}{96}=\bruch{3195}{32}\approx99,84 [/mm]

Steffi

Bezug
                                                                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 09.11.2010
Autor: angela.h.b.


> [mm]\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }[/mm] * [mm]\vektor{x_1 \\ x_2}[/mm] +  [mm]\vektor{-615 \\ -1080}[/mm] = [mm]\vektor{0 \\ 0} \to \vektor{x_1 \\ x_2}[/mm]  = [mm]\vektor{23.67 \\ 99.84}[/mm]
>
> gruss Kuriger
>  

Hallo,

da habe ich dann ja den richtigen Fehler erraten:

Du hast oben das GS

[mm] $\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }$ [/mm] * [mm] $\vektor{x_1 \\ x_2}$ [/mm] =  [mm] $\vektor{-615 \\ -1080}$ [/mm]

gelöst,

richtig gewesen wäre aber

[mm] $\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }$ [/mm] * [mm] $\vektor{x_1 \\ x_2}$ [/mm] = [mm] \red{-}$\vektor{-615 \\ -1080}$ [/mm] ,

also

[mm] $\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }$ [/mm] * [mm] $\vektor{x_1 \\ x_2}$ [/mm] = [mm] $\vektor{\red{+}615 \\ \red{+}1080}$ [/mm] .

In Deiner Ausgangsgleichung [mm] $\pmat{ 7 & 4.5 \\ 4.5 & 9.75 }$ [/mm] * [mm] $\vektor{x_1 \\ x_2}$ [/mm] +  [mm] $\vektor{-615 \\ -1080}$ [/mm] = [mm] $\vektor{0 \\ 0} [/mm] muß doch [mm] $\vektor{-615 \\ -1080}$ [/mm] durch subtrahieren nach rechts gebracht werden.

Fazit: ein kleiner Flüchtigkeitsfehler - kein Drama oderprinzipielles  Unverständnis.


Gruß v. Angela

P.S.: Aber ich würde Abstand davon nehmen, solche Aufgaben mit der inversen Matrix zu lösen.
Lern das Gaußverfahren, das ist meist praktischer für Handrechner, und außerdem funktioniert es auch bei Gleichungssystemen mit vielen Lösungen.
Steffi macht's Dir ja vor, und in Matrixschreibweise ist es übersichtlich, tinte- und nervensparend.







Bezug
                                                                        
Bezug
Invertierte Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 09.11.2010
Autor: Kuriger

Hallo Angela

Bei zwei Unbekannten ist der Gauss sinnvoll. Jedoch kann es auch vorkommen, dass ich drei Unbekannte und drei Gleichungen habe und die Werte [mm] x_1, x_2 [/mm] und [mm] x_3 [/mm] ermitteln muss. dann wirds ja mit dem Gauss anders umständlich und es ist eine Sonderschicht schon fast notwendig. Würdest du dann auf dieses verfahren zurückgreifen?

Danke, gruss Kuriger

Bezug
                                                                                
Bezug
Invertierte Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Di 09.11.2010
Autor: Steffi21

Hallo, zu Herrn Gauss kann ich dir nur raten, mal ein Beispiel

(1) [mm] 3x_1+4x_2+x_3=14 [/mm]
(2) [mm] -2x_1+x_2-5x_3=-15 [/mm]
(3) [mm] 4x_1+5x_2-7x_3=-7 [/mm]

macht

[mm] \pmat{ 3 & 4 & 1 & 14 \\ -2 & 1 & -5 & -15 \\ 4 & 5 & -7 & -7} [/mm]

jetzt neue Zeilen bilden:

neue 2. Zeile = 2 mal 1. Zeile + 3 mal 2. Zeile
neue 3. Zeile = -4 mal 1. Zeile + 3 mal 3. Zeile

[mm] \pmat{ 3 & 4 & 1 & 14 \\ 0 & 11 & -13 & -17 \\ 0 & -1 & -25 & -77} [/mm]

so ein Schritt, in 3. Zeile/2. Spalte eine Null zaubern, fertig, wo ist da eine Sonderschicht zu schieben??

Steffi


Bezug
                                                                                
Bezug
Invertierte Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Di 09.11.2010
Autor: angela.h.b.


> Hallo Angela
>  
> Bei zwei Unbekannten ist der Gauss sinnvoll. Jedoch kann es
> auch vorkommen, dass ich drei Unbekannte und drei
> Gleichungen habe und die Werte [mm]x_1, x_2[/mm] und [mm]x_3[/mm] ermitteln
> muss. dann wirds ja mit dem Gauss anders umständlich und
> es ist eine Sonderschicht schon fast notwendig. Würdest du
> dann auf dieses verfahren zurückgreifen?

Hallo,

fürs Rechnen mit Bleistift und Papier finde ich den Gauß unübertroffen: einfach, schnell und übersichtlich.
(Das einzige echte Problem, was man hier haben kann, sind doch mangelnde Rechenkünste - diese wirken bei mir leider sehr entschleunigend...)

Dieses Verfahren mit der inversen Matrix funktioniert, wie bereits gesagt, nur bei invertierbaren Matrizen, was schonmal ein echter Nachteil ist.
Und dann mußt Du die inverse Matrix ja auch erstmal irgendwo herbekommen, sprich: berechnen.
Wenn man das per Hand tut, sind die durchzuführenden Schritte ja genau die, die man auch bei Lösen des Systems per Gauß vorzunehmen hat - man hat beim Gauß halt noch eine Spalte mehr.
Dafür fällt die Fehlerquelle "Multiplikation von inverser Matrix mit Lösungsvektor" fort.

Nun kannst Du sagen: "Aber die inverse Matrix berechne ich sowieso mit dem Rechner."
Ich antworte: "Na, dann kannst Du Dir doch gleich das ganze Gleichungssystem automatisch lösen lassen und bist alle Sorgen los."

Was mich auf etwas anderes bringt: bei []Arndt Brünner könntest Du Dich mal umschauen.
Da kannst Du Dir inverse Matrizen, Determinanten uvm. berechnen und auch LGSe lösen lassen - man muß es natürlich prinzipiell per Hand können, aber wenn es wirklich mal um die reine Lösung geht oder zur Kontrolle ist das prima.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]