Irreduzible Komponenten < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:08 Sa 14.11.2009 | Autor: | kegel53 |
Aufgabe | Bestimmen Sie die irreduziblen Komponenten der Teilmenge [mm] \{X_1X_2=X_2X_3=X_1X_3=0\}\subset \mathbb{A}_K^3. [/mm] |
Nabend Leute,
ich bräuchte hier mal eine Art grobe Anleitung, was überhaupt zu tun ist. Dann wäre mir schon sehr geholfen. Ansonsten weiß ich gar nicht wie ich da dran gehn soll. Ich bedanke mich schon mal recht herzlich.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:03 So 15.11.2009 | Autor: | felixf |
Hallo!
> Bestimmen Sie die irreduziblen Komponenten der Teilmenge
> [mm]\{X_1X_2=X_2X_3=X_1X_3=0\}\subset \mathbb{A}_K^3.[/mm]
> Nabend
>
> Leute,
>
> ich bräuchte hier mal eine Art grobe Anleitung, was
> überhaupt zu tun ist. Dann wäre mir schon sehr geholfen.
> Ansonsten weiß ich gar nicht wie ich da dran gehn soll.
> Ich bedanke mich schon mal recht herzlich.
Nun, das haengt ganz davon ab was du schon weisst.
Du koenntest zum Beispiel die minimalen Primoberideale von [mm] $(X_1 X_2, X_2 X_3, X_1 X_3) \subseteq K[X_1, X_2, X_3]$ [/mm] bestimmen.
Alternativ ueberlegst du dir, wie solche irreduziblen Komponenten aussehen. Du musst ja moeglichst wenige Gleichungen hinzufuegen, um etwas irreduzibles zu erreichen. Und irreduzibel heisst, dass das Verschwindungsideal prim ist. Also: was kannst du z.B. zu dem Ideal [mm] $(X_1 X_2, X_2 X_3, X_1 X_3)$ [/mm] hinzufuegen, dass es prim wird?
Wenn du z.B. [mm] $X_1$ [/mm] hinzufuegst, erhaelst du [mm] $(X_1, X_1 X_2, X_2 X_3, X_1 X_3) [/mm] = [mm] (X_1, X_2 X_3)$, [/mm] was noch nicht prim ist; wenn du allerdings [mm] $X_2$ [/mm] hinzufuegst, wird es prim, es ist dann naemlich gleich [mm] $(X_1, X_2)$. [/mm] Damit ist [mm] $\{ X_1 = X_2 = 0 \}$ [/mm] eine irreduzible Teilmenge von deiner Teilmenge. Aber ist sie maximal? (Das musst du dir jetzt selber ueberlegen.)
Und kannst du noch weitere Kanidaten finden?
LG Felix
|
|
|
|
|
Hallo zusammen,
was mir noch nicht ganz klar ist:
1.) Warum gilt $ [mm] (X_1, X_1 X_2, X_2 X_3, X_1 X_3) [/mm] = [mm] (X_1, X_2 X_3) [/mm] $ ?
2.) warum ist $ [mm] (X_2, X_1, X_1 X_2, X_2 X_3, X_1 X_3) [/mm] = [mm] (X_1, X_2) [/mm] $ ?
Vielen Dank für die Erklärung, ich glaub ich steh voll auf dem Schlauch!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:36 Mi 18.11.2009 | Autor: | felixf |
Hallo!
> Hallo zusammen,
> was mir noch nicht ganz klar ist:
> 1.) Warum gilt [mm](X_1, X_1 X_2, X_2 X_3, X_1 X_3) = (X_1, X_2 X_3)[/mm]
> ?
> 2.) warum ist [mm](X_2, X_1, X_1 X_2, X_2 X_3, X_1 X_3) = (X_1, X_2)[/mm]
> ?
> Vielen Dank für die Erklärung, ich glaub ich steh voll
> auf dem Schlauch!
Du musst gucken, ob die Erzeuger auf der linken Seite in dem Ideal auf der rechten Seite liegen, und ob die Erzeuger auf der rechten Seite in dem Ideal auf der linken Seite liegen.
Dass die rechte Seite in der linken Seite enthalten ist ist klar, oder?
Bleibt noch die andere Richtung. Denk an die Schluckeigenschaft.
LG Felix
|
|
|
|
|
Was versteht man denn unter der "Schluckeigenschaft"?
Warum ist $ [mm] (X_2, X_1, X_1 X_2, X_2 X_3, X_1 X_3) \subseteq (X_1, X_2) [/mm] $, [mm] $X_3$ [/mm] ist doch gar nicht darin enthalten, wie soll dann Beispielsweise [mm] $X_2 X_3$ [/mm] entstehen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 Mi 18.11.2009 | Autor: | felixf |
Hallo!
> Was versteht man denn unter der "Schluckeigenschaft"?
Na, wenn $a$ im Ideal ist und $b$ im Ring, dann ist $a*b$ wieder im Ideal.
> Warum ist [mm](X_2, X_1, X_1 X_2, X_2 X_3, X_1 X_3) \subseteq (X_1, X_2) [/mm],
> [mm]X_3[/mm] ist doch gar nicht darin enthalten, wie soll dann
> Beispielsweise [mm]X_2 X_3[/mm] entstehen?
Weil [mm] $X_2$ [/mm] drinnen ist.
LG Felix
|
|
|
|