www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieIrrfahrten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Irrfahrten
Irrfahrten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irrfahrten: Irrfahrtsparadoxon
Status: (Frage) überfällig Status 
Datum: 16:28 Fr 05.06.2009
Autor: dummchen

Aufgabe
Führt man eine Irrfahrt auf den ganzzahligen Punkten der Zahlengeraden aus, wobei man vom Ursprung ausgeht und sich jedem Schritt um eine Einheit nach links oder rechts mit gleicher Wahrscheinlichkeit und unabhängig von den vorausgehenden Schritten fortbewegt, so
gelangt man mit der Wahrscheinlichkeit 1 zum Ursprung zurück.

Es lässt sich nun folgende Frage stellen:
Wie oft wird während dieser Irrfahrt ein gegebener Punkt k berührt, bevor man zum ersten Mal den Ursprung wieder erreicht?

Man würde natürlich annehmen, dass der Punkt k seltener berührt wird, je größer der Absolutbetrag der festgehaltenen ganzen Zahl k ist, d.h. je weiter k vom Ursprung entfernt ist.

Überraschenderweise erreicht jedoch die Irrfahrt vor der ersten Rückkehr den Punkt k im Mittel einmal, egal wie groß der der Betrag von k auch sein mag.

Warum ist das so?
Wie kann ich dieses zeigen?
Gibt es dazu Literatur?

Meine Erklärung wäre, dass  Erwartungswert der durchschnittlichen Schrittzahl bis zur Rückkehr unendlich groß ist und daher genug Zeit zur Verfügung steht, um durchschnittlich einmal jeden Punkt der Zahlengerade zu erreichen.

Aber wie zeige ich das Paradoxon?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Irrfahrten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Fr 05.06.2009
Autor: rabilein1


> Man würde natürlich annehmen, dass der Punkt k seltener
> berührt wird, je größer der Absolutbetrag der
> festgehaltenen ganzen Zahl k ist, d.h. je weiter k vom
> Ursprung entfernt ist.

Und wer sagt, dass dem nicht so ist?
Wann soll denn das "Spiel" zu Ende sein? Wenn man das erste Mal wieder zum Ursprung zurück kehrt oder erst bei der unendlichen Rückkehr?

Im ersten Fall wäre nach "Links-Rechts" oder "Rechts-Links" das Spiel bereits zu Ende. Die Chance dafür ist sehr groß.

Im letzeren Fall wäre ja niemals Schluss, und dann kann man auch nicht sagen, wie oft ein Punkt berührt wurde.

>  
> Überraschenderweise erreicht jedoch die Irrfahrt vor der
> ersten Rückkehr den Punkt k im Mittel einmal, egal wie groß
> der der Betrag von k auch sein mag.

Was heißt "im Mittel"? Wie wird denn das errechnet? Um das Mittel (Durchschnitt) zu bestimmen, muss man 2 Zahlen durcheinander dividieren. Welche denn??
Vielleicht liegt das Paradoxe lediglich in der Definition von "im Mittel".


Bezug
                
Bezug
Irrfahrten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Sa 06.06.2009
Autor: rabilein1


Ich habe das Eperiment mal durchgeführt:
2000 Mal bin ich zufallsbedingt einen Schritt nach links oder rechts gegangen.

Dabei kam ich 74 Mal zum Ursprung zurück.
83 Mal kam ich über die "3".
80 Mal kam ich über die "8".
72 Mal kam ich über die "10".
Und 36 Mal kam ich über die "15".

Interessant weiterhin: Die größte Entfernung vom Ursprung lag bei "23"

Aber wie gesagt: Ich hatte nur 2000 Schritte gemacht (Dann taten mir die Füße weh). Das sind jedoch nur Peanuts gegenüber dem Unendlichen.


> Was heißt "im Mittel"? Wie wird denn das errechnet?
> Um das Mittel (Durchschnitt) zu bestimmen, muss man
> 2 Zahlen durcheinander dividieren. Welche denn??

Es sind die "Zahlen" Unendlich und Unendlich, die man durcheinander dividiert.
Und was kommt da raus?  =>  EINS !!??




Bezug
        
Bezug
Irrfahrten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 13.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]