www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraIsomorphie additiver Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Isomorphie additiver Gruppen
Isomorphie additiver Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie additiver Gruppen: (R,+) isomorph zu (C,+) ?!
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 07.11.2006
Autor: Math_Preacher

Aufgabe
Zeigen Sie, daß die additiven Gruppen [mm] \IR [/mm] und [mm] \IC [/mm] isomorph sind.

Hallo allerseits!

Also, daß [mm] \IR^{2} [/mm] und [mm] \IC [/mm] isomorph sind, ist mir klar, aber - [mm] \IR [/mm] und [mm] \IC [/mm] ?!

Kann mir irgendwer helfen? Sehe ich hier nur mal wieder den berühmten Wald vor lauter Bäumen nicht, oder habe ich Recht mit meiner Vermutung, daß eben [mm] \IR [/mm] nicht (!) isomorph ist zu [mm] \IC, [/mm] jedenfalls nicht additiv?

Vielen Dank schon mal im Voraus,

Alex


P.S. (wie üblich ...):

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Isomorphie additiver Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Fr 10.11.2006
Autor: felixf

Moin Alex!

> Zeigen Sie, daß die additiven Gruppen [mm]\IR[/mm] und [mm]\IC[/mm] isomorph
> sind.
>  Hallo allerseits!
>  
> Also, daß [mm]\IR^{2}[/mm] und [mm]\IC[/mm] isomorph sind, ist mir klar, aber
> - [mm]\IR[/mm] und [mm]\IC[/mm] ?!

Warum nicht? Als Mengen sind sie ja gleichmaechtig :-)

> Kann mir irgendwer helfen? Sehe ich hier nur mal wieder den
> berühmten Wald vor lauter Bäumen nicht, oder habe ich Recht
> mit meiner Vermutung, daß eben [mm]\IR[/mm] nicht (!) isomorph ist
> zu [mm]\IC,[/mm] jedenfalls nicht additiv?

Doch, sie sind isomorph. Du kannst erstmal allgemein die folgende Aussage beweisen:

Sei $K$ ein Koerper und $V$ ein unendlichdimensionaler $K$-Vektorraum. Dann ist $V$ isomorph zu $V [mm] \times [/mm] V$.

(Das ist sogar charakteristisch fuer unendlichdimensionale Vektorraeume: ein $K$-Vektorraum $V [mm] \neq [/mm] 0$ ist genau dann unendlichdimensional, wenn $V$ isomorph zu $V [mm] \times [/mm] V$ ist.)

Und dann wendest du dass auf $K = [mm] \IQ$ [/mm] und $V = [mm] \IR$ [/mm] an. Benoetigt natuerlich das Zornsche Lemma, damit du eine $K$-Basis von $V$ waehlen kannst, aber konstruktiv geht das ganze sowieso nicht :-)

LG Felix


Bezug
                
Bezug
Isomorphie additiver Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mo 13.11.2006
Autor: Binie

Liebes Forum

Also ich habe gelesen, dass [mm] (\IR,+) [/mm] und [mm] (\IC,+) [/mm] isomorph sind, aber ich komme einfach ncht auf einen Isomorphismus. Ich habs ja echt versucht, und bin sicher es ist nicht soooo schwer, aber wahrscheinlich habe ich ein Brett vor dem Kopf. Hat jemand von euch einen Tipp?

Liebe Grüße Binie

Bezug
                        
Bezug
Isomorphie additiver Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mo 13.11.2006
Autor: moudi

Hallo Binie

Das ist gerade der Kern von Felix Aussage.

[mm] $\IR,+$ [/mm] und [mm] $\IC,+$ [/mm] sind isomorph, aber man kann keinen Isomorphismus explizit angeben.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]