www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenIsomorphie der 3 x 3 Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Isomorphie der 3 x 3 Matrizen
Isomorphie der 3 x 3 Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie der 3 x 3 Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Mi 12.12.2007
Autor: Caroline

Hallo, habe eine Frage zu einer Aufgabe in der Linearen Algebra:

----------------------------
Zeigen Sie: Die Gruppe [mm] GL_{3}(2) [/mm] der invertierbaren 3 × 3 Matrizen mit Einträgen im endlichen
Körper [mm] \IF_{2} [/mm] ist isomorph zu einer Untergruppe der alternierenden Gruppe [mm] A_{7}. [/mm] Betrachten
Sie dazu die Operation von [mm] GL_{3}(2) [/mm] auf M := [mm] \IF_{3}^{2}\backslash\{0\}. [/mm]
----------------------------

Also ich weiß nicht, was M überhaupt ist, sind dies die 3er Tupel über diesem Körper? Und ich weiß nicht welche Aktion ich betrachten soll, kann mir jmd. helfen bei dieser Aufgabe?

LG

Caroline

        
Bezug
Isomorphie der 3 x 3 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mi 12.12.2007
Autor: andreas

hi

> Hallo, habe eine Frage zu einer Aufgabe in der Linearen
> Algebra:
>  
> ----------------------------
>  Zeigen Sie: Die Gruppe [mm]GL_{3}(2)[/mm] der invertierbaren 3 × 3
> Matrizen mit Einträgen im endlichen
>  Körper [mm]\IF_{2}[/mm] ist isomorph zu einer Untergruppe der
> alternierenden Gruppe [mm]A_{7}.[/mm] Betrachten
>  Sie dazu die Operation von [mm]GL_{3}(2)[/mm] auf M :=
> [mm]\IF_{3}^{2}\backslash\{0\}.[/mm]
>  ----------------------------
>  
> Also ich weiß nicht, was M überhaupt ist, sind dies die 3er
> Tupel über diesem Körper?

das sind genau die 3 zeiligen spaltenvektoren über dem körper außer dem nullvektor.


> Und ich weiß nicht welche Aktion
> ich betrachten soll

was gibt es denn für eine natürliche operation, wenn du eine [mm] $3\times [/mm] 3$-matrix gegeben hast und einen 3-zeiligen spaltenvektor?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]