www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphie von Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Isomorphie von Gruppen
Isomorphie von Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie von Gruppen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:41 So 21.06.2009
Autor: Becky87d

Aufgabe
Zeigen Sie, dass die Gruppe [mm] \IZ [/mm] x [mm] \IZ [/mm] nicht isomorph zu [mm] \IZ [/mm] ist.

Hallo!

Ich habe leider bisher keinen weiterführenden Ansatz gefunden, um diese Aufgabe zu lösen.
Zunächst hatte ich versucht zu zeigen, dass die Gruppen nicht gleichmächtig sind, um dann daraus abzuleiten, dass es keine Bijektion zwischen den Gruppen geben kann..und damit auch keinen Isomorphismus.
Allerdings sind die beiden Gruppen, falls ich das richtig sehe beide abzählbar unendlich und damit gleichmächtig.
Kann mir jemand einen Tipp geben, welchen Ansatz ich stattdessen verfolgen sollte?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke!

        
Bezug
Isomorphie von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 So 21.06.2009
Autor: statler


> Zeigen Sie, dass die Gruppe [mm]\IZ[/mm] x [mm]\IZ[/mm] nicht isomorph zu [mm]\IZ[/mm]
> ist.
>  Hallo!
>  
> Ich habe leider bisher keinen weiterführenden Ansatz
> gefunden, um diese Aufgabe zu lösen.
> Zunächst hatte ich versucht zu zeigen, dass die Gruppen
> nicht gleichmächtig sind, um dann daraus abzuleiten, dass
> es keine Bijektion zwischen den Gruppen geben kann..und
> damit auch keinen Isomorphismus.
> Allerdings sind die beiden Gruppen, falls ich das richtig
> sehe beide abzählbar unendlich und damit gleichmächtig.

Das siehst du völlig richtig.

>  Kann mir jemand einen Tipp geben, welchen Ansatz ich
> stattdessen verfolgen sollte?

[mm] \IZ [/mm] ist zyklisch und wird z. B. von 1 erzeugt. Kann es ein Bild von 1 geben, das [mm] \IZ \times \IZ [/mm] erzeugt?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Isomorphie von Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 So 21.06.2009
Autor: Becky87d

Nein [mm] \IZ [/mm] x [mm] \IZ [/mm] ist nicht zyklisch, daher wäre es nicht möglich, dass es ein Bild von 1 gibt, welches diese Gruppe erzeugt. Allerding verstehe ich nicht, wieso es genau dieses Bild sein müsste, welches die Gruppe erzeugt?
Wenn ich diesen Ansatz verfolge, weiß ich nicht genau, wie ich beweisen könnte, dass eine nicht-zyklische Gruppe niemals isomorph zu einer zyklischen sein kann...(Ich gehe mal davon aus, dass dem so ist.)



Bezug
                        
Bezug
Isomorphie von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 So 21.06.2009
Autor: Gonozal_IX

Hiho,

> Allerding verstehe ich nicht, wieso es genau
> dieses Bild sein müsste, welches die Gruppe erzeugt?

wenn es einen Isomorphismus gäbe, würde es zu jedem Element ein "Urbild" geben, so dass f angewendet darauf dein Element wäre.

Allerdings wird das Urbild nun von 1 erzeugt, anwendung der Homomorphismus-Regeln ergibt dir eine Darstellung durch f(1).

MfG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]