www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Isomorphismus
Isomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Mi 02.05.2012
Autor: Schachtel5

Hi, ich habe mal eine Frage dazu, dass [mm] \IR[x]/(x^2+1) \cong \IC [/mm] ist. Wie kann denn konkret so ein Isomorphismus aussehen, der { [mm] (x^2+1)*p(x); p(x)\in \IR[x] [/mm] } in die komplexen Zahlen abbildet?
Wir hatten die Isomorphie mit dem Homomorphiesatz begründet, dazu die Voraussetzungen hingeschrieben, dass [mm] (f(x)=x^2+1) [/mm] = [mm] ker(\phi), \phi: \IR[x]->\IC [/mm] mit [mm] g\mapsto [/mm] g(i) ist der Einsetzungshomomorphismus. Stimmt das alles soweit? Lg

        
Bezug
Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mi 02.05.2012
Autor: kamaleonti

Hallo Schachtel5,
> Hi, ich habe mal eine Frage dazu, dass [mm]\IR[x]/(x^2+1) \cong \IC[/mm] ist. Wie kann denn konkret so ein Isomorphismus aussehen,
> der [mm] \{(x^2+1)*p(x); p(x)\in \IR[x]\} [/mm] in die komplexen  Zahlen abbildet?

Ich glaube, Du verwechselt hier was. Es ist

   [mm] \IR[x]/(x^2+1) =\{[p]:p\in\IR[x]\} [/mm]

die Menge der Äquivalenzklassen zur folgenden Relation auf [mm] \IR[X]. [/mm]

Seien [mm] r,s\in\IR[x]. [/mm] Es gilt [mm] $r\sim [/mm] s$ genau dann, wenn r-s ein Vielfaches von p ist.

> Wir hatten die Isomorphie mit dem Homomorphiesatz
> begründet, dazu die Voraussetzungen hingeschrieben, dass
> [mm](f(x)=x^2+1)[/mm] = [mm]ker(\phi), \phi: \IR[x]->\IC[/mm] mit [mm]g\mapsto[/mm] g(i) ist der Einsetzungshomomorphismus.
> Stimmt das alles soweit?

Ja, das kann man mit dem Homomorphiesatz begründen.

LG


Bezug
                
Bezug
Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 02.05.2012
Autor: Schachtel5

Danke. Hmm okay, so sehen die mengen dann also aus, muss mir das nochmal klarmachen. Wie würde denn da konkret so ein Isomorphismus aussehen? ich versuche das alles besser zu verstehen.

Bezug
                        
Bezug
Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 02.05.2012
Autor: kamaleonti

Hallo,
> Danke. Hmm okay, so sehen die mengen dann also aus, muss
> mir das nochmal klarmachen. Wie würde denn da konkret so
> ein Isomorphismus aussehen? ich versuche das alles besser
> zu verstehen.

Den Isomorphismus bekommst Du direkt aus dem Homomorphiesatz.
Sei [mm] Z:=\IR[X]/(x^2+1). [/mm]

Betrachte den Einsetzungshomomorphismus [mm] g:\IR[X]\to\IC, p\mapsto [/mm] p[i].
Der Kern davon ist das Ideal [mm] (X^2+1). [/mm] Es gibt die kanonische Projektionsabbildung [mm] \pi:\IR[X]\to [/mm] Z.  
Der Isomorphismus [mm] \varphi: Z\to\IC [/mm] wird so gewählt, dass [mm] g=\varphi\circ\pi. [/mm]

Hier wird [mm] \varphi [/mm] durch [mm] $[X]\mapsto [/mm] i$ und [mm] $[1]\mapsto1$ [/mm] bestimmt.
Interpretation: [mm] \pi(X)=[X] [/mm] ist Nullstelle von [mm] x^2+1 [/mm] in Z.

LG



Bezug
                                
Bezug
Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mi 02.05.2012
Autor: Schachtel5

achso ja okay, dass ist das, was uns der homomorphiesatz bringt. vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]