www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIsomorphismus / Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Isomorphismus / Unterräume
Isomorphismus / Unterräume < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus / Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Do 17.04.2008
Autor: fkerber

Aufgabe
Seien U und W Unterräume des Vektorraums V. Zeigen Sie: Die kanonische Abbildung
$$ [mm] \phi: [/mm] W [mm] \to [/mm] (U+W) / U
w [mm] \mapsto [/mm] w+ U$$
induziert einen Isomorphismus
$$W/(U [mm] \cap [/mm] W) [mm] \cong [/mm] (U+W) /U$$

Hallo!

Ich weiß leider bei dieser Aufgabe gar nicht, wo oben und unten ist. Allerdings ist es so, dass der Prof. ausdrücklich die Wichtigkeit betont hat und ich deswegen zumindest gerne etwas mehr Licht sehen würde.

Allgemein kann ich mir gar nichts wirklich unter "+", "/" oder Schnitt von Vektorräumen vorstellen.

Ich würde euch gerne Lösungsansätze zeigen, aber ich habe nicht die geringste Idee, um was es hier überhaupt geht, sry.

Trotzdem wäre es toll, wenn ihr mir helfen könntet.

Liebe Grüße,
fkerber

        
Bezug
Isomorphismus / Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 17.04.2008
Autor: SEcki


> Ich weiß leider bei dieser Aufgabe gar nicht, wo oben und
> unten ist. Allerdings ist es so, dass der Prof.
> ausdrücklich die Wichtigkeit betont hat und ich deswegen
> zumindest gerne etwas mehr Licht sehen würde.

Naja, ein Isomorphiesatz halt.

> Allgemein kann ich mir gar nichts wirklich unter "+", "/"
> oder Schnitt von Vektorräumen vorstellen.

Hm, da lass ich andere ran, dass zu erklären - wo ist denn die Problem mit den Definitionen? Darum geht es doch vor allem hierbei.

> Trotzdem wäre es toll, wenn ihr mir helfen könntet.

Die Aufgabe ist wirklich leicht: Erstens musst du dir klar machen, dass dein kanonischer Hom. surjektiv ist. Alszweites musst du dir überlegen - was ist denn der Kern von der Abbildung? Der stellt sich genau als [m]U\cap W [/m]heraus - und damit ist wegen dem Homomorphiesatz der Isomorphismus gegeben. Hattest du den schon?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]