www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraJordan-Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Jordan-Normalform
Jordan-Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 07.08.2006
Autor: Moe007

Hallo,
ich hab da eine frage.
Und zwar, kann man zu jeder Matrix eine Jordan-Normalform finden?
Wenn nein, zu welchen kann man es?
Das charakt. Polynom muss doch in Linearfaktoren zerfallen oder? Muss da noch was gelten?

Ich hoffe, es kann mir jemand weiter helfen.

Danke vielmals.

Moe

        
Bezug
Jordan-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mo 07.08.2006
Autor: Bastiane

Hallo!

>  ich hab da eine frage.
>  Und zwar, kann man zu jeder Matrix eine Jordan-Normalform
> finden?
>  Wenn nein, zu welchen kann man es?
>  Das charakt. Polynom muss doch in Linearfaktoren zerfallen
> oder? Muss da noch was gelten?

Leider habe ich da nicht mehr wirklich viel Ahnung von, aber evtl. hilft dir ja das hier schon einmal. :-) Anscheinend reicht das ja schon!?

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Jordan-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 07.08.2006
Autor: Kuebi

Hey du!

> kann man zu jeder Matrix eine Jordan-Normalform finden? Wenn nein, zu welchen kann man es?

Allem voran und sehr simpel kann man die Matrizen schon einmal kräftig einschränken, für welche es eine Jordanform gibt: Sie müssen quadratisch sein.
Ansonsten muss zusätzlich gelten: Das char. Polynom der Matrix zerfällt vollständig in Linearfaktoren, die Nullstellen (Eigenwerte) sind paarweise verschieden.
Die Jordanform ist, wenn die Matrix nicht diagonalisierbar ist, die einfachste und schönste Form auf die man die Matrix bringen kann.
Sie ist im übrigen Eindeutig bis auf die Reihenfolge der Eigenwerte auf der Hauptdiagonalen.

Lg, Kübi
:-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]