www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenK-Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - K-Vektorraum
K-Vektorraum < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

K-Vektorraum: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:28 So 12.01.2014
Autor: ElizabethBalotelli

Aufgabe
Sei K ein endlicher Körper mit k Elementen und V ein n-dimensionaler K-Vektorraum.
Wie viele geordnete und wie viele ungeordnete Basen hat V?

Zuerst: Was genau ist der Unterschied zwischen geordneten und ungeordneten Basen? Das wurde in der Vorlesung nicht ganz klar, und auch im Internet finde ich da nichts genaues dazu.

Eine Basis ist ja ein Erzeugendensystem mit linear unabhängigen Vektoren. Das heisst mit den Basen kann man den Vektorraum darstellen. Da der Körper ja den Vektorraum "produziert" gehe ich mal davon aus, dass die Anzahl der Basen was mit der Anzahl der Elemente des Körpers zu tun hat? Aber wie genau bekomme ich diese Anzahl heraus?

Wäre lieb wenn mir jemand weiter helfen könnte =)

Liebe Grüße

Elizabeth

        
Bezug
K-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 13.01.2014
Autor: hippias


> Sei K ein endlicher Körper mit k Elementen und V ein
> n-dimensionaler K-Vektorraum.
>  Wie viele geordnete und wie viele ungeordnete Basen hat
> V?
>  Zuerst: Was genau ist der Unterschied zwischen geordneten
> und ungeordneten Basen? Das wurde in der Vorlesung nicht
> ganz klar, und auch im Internet finde ich da nichts genaues
> dazu.

Es duerfte sich hierbei lediglich um die Notation der Basis drehen: eine geordnete Basis liegt vor, wenn man die Basis als Tupel der Basisvektoren angibt. Bei einem Tupel spielt die Reihenfolge der Eintraege eine Rolle. Ungeordnet ist die Basis, wenn man sie als Menge angibt.

>  
> Eine Basis ist ja ein Erzeugendensystem mit linear
> unabhängigen Vektoren. Das heisst mit den Basen kann man
> den Vektorraum darstellen. Da der Körper ja den Vektorraum
> "produziert" gehe ich mal davon aus, dass die Anzahl der
> Basen was mit der Anzahl der Elemente des Körpers zu tun
> hat? Aber wie genau bekomme ich diese Anzahl heraus?

Versuche zuerst die Anzahl der geordneten Basen zu ermitteln (geordnete Objekte zu zaehlen ist meist einfacher). Ich gehe von einem Vektor [mm] $v_{1}\neq [/mm] 0$ aus; fuer diesen gibt es [mm] $k^{n}-1$ [/mm] Moeglichkeiten. Der naechste Vektor [mm] $v_{2}$ [/mm] darf nicht linear abhaengig von [mm] $v_{1}$ [/mm] sein, weshalb ich ihn aus [mm] $V\backslash Kv_{1}$ [/mm] waehlen muss. Diese Menge enthaelt [mm] $k^{n}-k$ [/mm] Elemente.

Auf diese Weise kannst Du alle (?) geordneten Basen konstruieren und ihre Anzahl ergibt sich aus dem Produkt der Anzahl der Moeglichkeiten fuer die [mm] $v_{i}$. [/mm]

>  
> Wäre lieb wenn mir jemand weiter helfen könnte =)
>  
> Liebe Grüße
>  
> Elizabeth


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]