www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKQ Schätzer für Spirale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - KQ Schätzer für Spirale
KQ Schätzer für Spirale < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

KQ Schätzer für Spirale: Parameter Schätzen einer Bahn
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 24.11.2009
Autor: Berto

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Ein Massenpunkt bewegt sich auf einer spiralförmigen Bahn mit der Funktion F(x) = $ \IR_+ $ -> $ \IR^2 $ und F(x) = $ \vektor{axcos(bx) \\ axsin(bx)}. $ Gegeben seien fehlerbehaftete Messungen $ (x_i, F(x_1)_i,F(x_2)_i) $ i $ \in $ {1,..,n}. Passen Sie die Parameter a und b der Spirale an die Daten mit der Methode der kleinsten Quadrate an.  

Hallo,

Meine Frage bezieht sich eigentlich auf eine praktisch identische Frage, die bereits schon gestellt wurde: siehe:

https://matheraum.de/forum/KQ-Schaetzung_2-dim_Funktion/t494937

Durch partielle Ableitung von  $ (y_i-ax_i \cos(bx_i))^2+(z_i-ax_i\sin(bx_i)})^2 $ bin ich auf das Minimierungsproblem:

$ \wurzel{((F(x_1)_i)^2+F(x_2)_i)^2)}=a*x_i $ gekommen und
$ arctan(F(x_2)_i)/F(x_1)_i))=b*x_i$

Nun habe ich doch 2 lineare Regressionen, welche ich separat mit der KQ-Methode bearbeiten kann.
Heisst im ersten Fall setze ich:
A = $ $\begin{pmatrix}1 & x_1\\ 1 & x_2\\ . & .\\ 1 & x_n\end{pmatrix}$ $ und Y = $ \vektor{\wurzel{(F(x_1)_i)^2+F(x_2)_i)^2} \\ .\\\wurzel{(F(x_1)_n)^2+F(x_2)_n)^2}}. $ und erhalte dann mein Schätzer für a gemäss dem Steigungskoeffizient aus
(\overline{A}*A)^(-1)*\overline{A}*Y (wobei mit A quer die transponierte von A gemeint ist)

dito tue ich das mit der zweiten Regression also:

A = $ $\begin{pmatrix}1 & x_1\\ 1 & x_2\\ . & .\\ 1 & x_n\end{pmatrix}$ $ und Z = $ \vektor{arctan((F(x_2)_i)/F(x_1)_i)) \\ .\\arctan((F(x_2)_n)/F(x_2)_n))}. $

Und den Schätzer für b erhalten wir dann wieder durch:
(\overline{A}*A)^(-1)*\overline{A}*Z

Wenn ich nun aber meine Messwerte visualisiere und ebenfalls die Funktion F mit den angepassten Werten a und b Visualisiere scheint mir etwas gar nicht zu stimmen. Habe aber keine Ahnung was an meinem Ansatz falsch sein sollte.
Wäre super, wenn mir jemand helfen könnte.

Danke schon mal im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
KQ Schätzer für Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Do 14.01.2010
Autor: MathePower

Hallo Berto,

> Ein Massenpunkt bewegt sich auf einer spiralförmigen Bahn
> mit der Funktion F(x) = [mm]\IR_+[/mm] -> [mm]\IR^2[/mm] und F(x) =
> [mm]\vektor{axcos(bx) \\ axsin(bx)}.[/mm] Gegeben seien
> fehlerbehaftete Messungen [mm](x_i, F(x_1)_i,F(x_2)_i)[/mm] i [mm]\in[/mm]
> {1,..,n}. Passen Sie die Parameter a und b der Spirale an
> die Daten mit der Methode der kleinsten Quadrate an.
> Hallo,
>  
> Meine Frage bezieht sich eigentlich auf eine praktisch
> identische Frage, die bereits schon gestellt wurde: siehe:
>  
> [mm]https://matheraum.de/forum/KQ-Schaetzung_2-dim_Funktion/t494937[/mm]
>  
> Durch partielle Ableitung von  [mm] \summe_{i=1}^{n} [/mm]
> bin ich auf das Minimierungsproblem:
>  
> [mm]\wurzel{((F(x_1)_i)^2+F(x_2)_i)^2)}=a*x_i[/mm] gekommen und
>  [mm]arctan(F(x_2)_i)/F(x_1)_i))=b*x_i[/mm]
>  
> Nun habe ich doch 2 lineare Regressionen, welche ich
> separat mit der KQ-Methode bearbeiten kann.
> Heisst im ersten Fall setze ich:
>  A =[mm][/mm][mm] \begin{pmatrix}1 & x_1\\ 1 & x_2\\ . & .\\ 1 & x_n\end{pmatrix}[/mm][mm][/mm]
> und Y = [mm]\vektor{\wurzel{(F(x_1)_i)^2+F(x_2)_i)^2} \\ .\\\wurzel{(F(x_1)_n)^2+F(x_2)_n)^2}}.[/mm]
> und erhalte dann mein Schätzer für a gemäss dem
> Steigungskoeffizient aus
>  [mm](\overline{A}*A)^{-1}*\overline{A}*Y[/mm] (wobei mit A quer die
> transponierte von A gemeint ist)
>  
> dito tue ich das mit der zweiten Regression also:
>  
> A =[mm][/mm][mm] \begin{pmatrix}1 & x_1\\ 1 & x_2\\ . & .\\ 1 & x_n\end{pmatrix}[/mm][mm][/mm]
> und Z = [mm]\vektor{arctan((F(x_2)_i)/F(x_1)_i)) \\ .\\arctan((F(x_2)_n)/F(x_2)_n))}.[/mm]
>  
> Und den Schätzer für b erhalten wir dann wieder durch:
>  [mm](\overline{A}*A)^{-1}*\overline{A}*Z[/mm]
>  
> Wenn ich nun aber meine Messwerte visualisiere und
> ebenfalls die Funktion F mit den angepassten Werten a und b
> Visualisiere scheint mir etwas gar nicht zu stimmen. Habe
> aber keine Ahnung was an meinem Ansatz falsch sein sollte.


Nun, für das a magst Du das Richtige herausbekommen

Anders sieht es beim b aus. Das ist nicht das Richtige.

Besser Du betrachtest

[mm]\bruch{\partial}{\partial a}\summe_{i=1}^{n}(y_i-ax_i \cos(bx_i))^2+(z_i-ax_i\sin(bx_i)})^2=0[/mm]

[mm]\bruch{\partial}{\partial b}\summe_{i=1}^{n}(y_i-ax_i \cos(bx_i))^2+(z_i-ax_i\sin(bx_i)})^2=0[/mm]

Rechnet man das aus, so führt das
auf ein Nullstellenproblem von b, das
mit dem Newton-Verfahren gelöst werden kann.

Das Problem. das sich hier stellt, ist
daß es mehrere Lösungen für b gibt.

Hier ist dann das Minimum von

[mm]\summe_{i=1}^{n}(y_i-ax_i \cos(bx_i))^2+(z_i-ax_i\sin(bx_i)})^2[/mm]

zu suchen.

Dazu benutzt Du die berechneten Parameter a und b.


> Wäre super, wenn mir jemand helfen könnte.
>  
> Danke schon mal im voraus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]