www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKänguruKänguru 2000: Frage zur Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Känguru" - Känguru 2000: Frage zur Lösung
Känguru 2000: Frage zur Lösung < Känguru < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Känguru 2000: Frage zur Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 31.01.2020
Autor: ms2008de

Aufgabe
Marie und Peter setzen je 20 Gummibärchen ein und spielen durch Werfen einer Münze um diesen Einsatz. Vor jedem Wurf raten beide, was oben liegen wird, Wappen oder Zahl. Wer als Erster 10-mal richtig geraten hat, gewinnt den gesamten Einsatz (40 Gummibärchen). Als dann Marie 7-mal und Peter 9-mal richtig geraten hat, beschließen sie, die Gummibärchen entsprechend der Wahrscheinlichkeit, den ganzen Einsatz zu gewinnen, zu verteilen. Wie viele Gummibärchen bekommt Peter?
(A) 22
(B) 25
(C) 30
(D) 32
(E) 35


Hallo,

es handelt sich hierbei um Aufgabe 30 der Klassenstufen 9/10 aus dem Jahr 2000.
Ich habe eine Frage zum Lösungsweg. Hier wird argumentiert, da es bei 3 Würfen 8 Möglichkeiten gibt, sei die Chance für Marie 1/8 und für Peter demzufolge 7/8, womit er 35 Gummibärchen bekommt.
Mir ist der Lösungsweg insofern unklar, alsdass 1. im Grunde niemand garantiert, dass das Spiel nach 3 Würfen einen Sieger hat und 2. der Fall, dass das Spiel unentschieden enden könnte, gar nicht in Betracht gezogen wird....
Man müsste somit im Grunde für die Wahrscheinlichkeiten eine unendliche Reihe aufstellen und gesondert den Fall "Unentschieden" betrachten, doch hier komm ich nicht auf den entscheidenden Ansatz, oder ist die Lösung 7/8 womöglich am Ende doch richtig???

Wäre euch um Hilfe dankbar,

viele Grüße
ms2008de

        
Bezug
Känguru 2000: Frage zur Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Fr 31.01.2020
Autor: Gonozal_IX

Hiho,

die Frage ist schlecht gestellt.
Du triffst eine falsche Annahme, der Lösungsweg impliziert die Annahme einer anderen und ich hab mich beim Lesen gefragt, welche der beiden Möglichkeiten gelten soll…

Klingt alles recht orakelhaft, nun die Auflösung:

1.) Bei der Aufgabenstellung ist nicht klar, was mit "Vor jedem Wurf raten beide, was oben liegen wird" exakt gemeint ist. Dürfen beide dasselbe nehmen oder müssen sich die Annahmen unterscheiden?
2.) Deine Ausführungen sind korrekt, wenn man von ersterem ausgeht.
3.) Der Lösungsweg impliziert letzteres. Denn nur dann gibt es exakt 8 Ausgänge, von denen Marie in genau einem gewinnt: Sie liegt drei mal richtig (und damit Peter immer falsch).
Die von dir angesprochenen Probleme können bei diesem Fall nicht auftreten, weil in jedem Spiel mindestens einer gewinnt. D.h. das Spiel ist definitiv nach maximal 3 Spielen beendet.

Aber wie du siehst: Dein Ansatz & Verwirrung ist bei der gegebenem Fragestellung durchaus angebracht.

Gruß,
Gono

Bezug
        
Bezug
Känguru 2000: Frage zur Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Fr 31.01.2020
Autor: Al-Chwarizmi

Ich bin mit Gonozal einverstanden, dass diese Aufgabe offenbar missverständlich bzw. falsch gestellt war, weil sie gar nicht dem vorgeschlagenen Lösungsweg entspricht.
Der Hauptfehler war, dass da von einem Münzenwurf ausgegangen wird, über dessen Ausgang in jedem Wurf die beiden Spieler "raten" dürfen.
Gemeint war wohl, dass z.B. bei jedem Wurf  "Wappen" einen Gewinnpunkt für Marie und "Zahl" einen Gewinnpunkt für Peter ergeben sollte.
Vielleicht steckte irgendwo noch die Idee dahinter, den Effekt einer möglichen Asymmetrie der Münze durch das "Raten" zu eliminieren.

Es wird wohl schwer fallen, die seinerzeitigen Aufgabensteller ausfindig zu machen, um sie auf diesen Fehler aufmerksam zu machen ...

Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]