www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKalman Decomposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Kalman Decomposition
Kalman Decomposition < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kalman Decomposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Do 23.06.2011
Autor: qsxqsx

Hallo,

Kennt sich jemand aus mit der Kalman Decomposition? Kommt eigentlich aus der Systemtheorie (state space Equations). Wer sich mit lineare Algebra auskennt, kann mir aber vielleicht mehr weiterhelfen:

Gegeben sei das state space System (A,B,C und D sind gegebenfalls Matrizen):
[mm] \bruch{d x}{dt} [/mm] = A*x + B*u
y = C*x + D*u

-The system is controllable if and only if the Matrix P = [B AB [mm] A^{2}B [/mm] ... [mm] A^{n-1}B] [/mm] has rank n.
-The system is observable if and only if the Matrix Q = [mm] \vektor{C \\ CA \\ CA^{2} \\ ... \\ CA^{n-1}} [/mm] has rank n.

Die Kalman Decomposition soll nun die Matrix A mit einer Matrix T transformieren [mm] (A_{neu} [/mm] = [mm] T^{-1}*A*T), [/mm] sodass [mm] A_{neu} [/mm] in vier Teile zerfällt:
1. Einen controllablen und observablen Teil
2. Einen controllablen und nicht observablen Teil
3. Einen nicht controllablen und observablen Teil
4. Einen nicht controllablen und nicht observablen Teil

Wie finde ich allgemein T bzw. [mm] A_{neu}? [/mm] Ich finds sau schwer!

[]Der Link hilft mir wenig!

Gruss

        
Bezug
Kalman Decomposition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 Do 28.07.2011
Autor: qsxqsx

Hallo;)

Ich habs raus, kurze Anleitung:

Wenn A uncontrollable und unobervable Teila hat, so ist der Rank von C und Q nicht gleich der Anzahl Spalten bzw. Zeilen der Matrix A. Man nimmt sich dann Basisvektoren von Q und C und erweitert die Transformationsmatrix T mit zusätzlichen Basisvektoren, sodass wieder der ganze Vektorraum von A aufgespannt wird. Wenn man das geschickt macht kann man die Kalman Decomposition erlangen...

Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]