www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKanal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Kanal
Kanal < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kanal: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 06.09.2008
Autor: AbraxasRishi

Aufgabe
Wie sind die Abmessungen des Querschnitts eines Kanals zu wählen , wenn dieser ein oben offenes symmetrisches Trapez mit dem Boschungswinkel  [mm] \alpha=75° [/mm] und dem Flächeninhalt [mm] A=10m^2 [/mm] ist, wobei der benetzte Umfang möglichst gering sein soll?


Hallo nochmal!

Da mein Ergebniss von dem im Lösungsbuch um einiges abweicht und ich keinen Fehler finde möchte ich euch um Hilfe bei der Korrektur bitten.

Meine Idee:

[Dateianhang nicht öffentlich]

[mm]10=tan(\alpha)x(c+x)\qquad c=\frac{10-tan(\alpha)x^2}{tan(\alpha)x}\qquad f(x)= \frac{10-tan(\alpha)x^2}{tan(\alpha)x}+\frac{2x}{cos(\alpha)}\qquad f'(x)=\frac{-tan^2(\alpha)x^2-10tan(\alpha)}{tan^2(\alpha)x^2}+\frac{2}{cos(\alpha)}=0\qquad x=\pm \sqrt{\frac{10sin(\alpha)}{-cos(\alpha)tan^2(\alpha)+2tan^2(\alpha)}}=\pm 0,631[/mm]

Vielen Dank!

Gruß

Angelika


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Kanal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 06.09.2008
Autor: abakus


> Wie sind die Abmessungen des Querschnitts eines Kanals zu
> wählen , wenn dieser ein oben offenes symmetrisches Trapez
> mit dem Boschungswinkel  [mm]\alpha=75°[/mm] und dem Flächeninhalt
> [mm]A=10m^2[/mm] ist, wobei der benetzte Umfang möglichst gering
> sein soll?
>  
>
> Hallo nochmal!
>  
> Da mein Ergebniss von dem im Lösungsbuch um einiges
> abweicht und ich keinen Fehler finde möchte ich euch um
> Hilfe bei der Korrektur bitten.
>  
> Meine Idee:
>  
> [Dateianhang nicht öffentlich]
>  
> [mm]10=tan(\alpha)x(c+x)\qquad c=\frac{10-tan(\alpha)x^2}{tan(\alpha)x}\qquad f(x)= \frac{10-tan(\alpha)x^2}{tan(\alpha)x}+\frac{2x}{cos(\alpha)}\qquad f'(x)=\frac{-tan^2(\alpha)x^2-10tan(\alpha)}{tan^2(\alpha)x^2}+\frac{2}{cos(\alpha)}=0\qquad x=\pm \sqrt{\frac{10sin(\alpha)}{-cos(\alpha)tan^2(\alpha)+2tan^2(\alpha)}}=\pm 0,631[/mm]

Hallo,
die Ableitung scheint zu stimmen.
Gruß Abakus

>  
> Vielen Dank!
>  
> Gruß
>  
> Angelika
>  


Bezug
                
Bezug
Kanal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 06.09.2008
Autor: AbraxasRishi

Danke für die Korrektur![flowers]

In meinen Buch ist jedoch für x=0,8327m angegeben. Kann sein, dass der Taschenrechner so sehr abweicht oder wo liegt sonst der Fehler? Vielleicht bei den Nebenbedingungen?Ich finde auch nichts!

Danke für die Geduld!

Angelika

Bezug
                        
Bezug
Kanal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 06.09.2008
Autor: Steffi21

Hallo,

[mm] f(x)=\bruch{10-x^{2}*tan(75^{0})}{x*tan(75^{0})}+\bruch{2x}{cos(75^{0})} [/mm]

[mm] f(X)=\bruch{2,6795}{x}-x+7,7274x [/mm]

[mm] f(x)=\bruch{2,6795}{x}+6,7274x [/mm]

jetzt haben wir nicht die Not, alle Winkelfunktionen mitzuschleppen

[mm] f'(x)=-\bruch{2,6795}{x^{2}}+6,7274 [/mm]

x=0,6311

das Ergebnis x=0,8327 entsteht, wenn der Kanal einen Deckel hat, es kommt also zum Umfang nach dazu +c+2x, die obere Seite vom Trapez, kannst es ja mal durchrechnen, aber hat ein Kanal einen Deckel?? Ich sage klar nein!!

Steffi

Bezug
                                
Bezug
Kanal: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Sa 06.09.2008
Autor: AbraxasRishi

Vielen Dank Steffi!


> das Ergebnis x=0,8327 entsteht, wenn der Kanal einen Deckel
> hat, es kommt also zum Umfang nach dazu +c+2x, die obere
> Seite vom Trapez, kannst es ja mal durchrechnen, aber hat
> ein Kanal einen Deckel?? Ich sage klar nein!!

Ich auch!
Es wird wahrscheinlich ein Druck-Fehler bei den Ergebnissen sein...oder bei der Aufgabenstellung??


Gruß

Angelika

>  
> Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]