www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKanalcodierunssatz bei Shannon
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Kanalcodierunssatz bei Shannon
Kanalcodierunssatz bei Shannon < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kanalcodierunssatz bei Shannon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Sa 16.12.2006
Autor: Gilga

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich wollte gerade den Kanalcodierungssatz aus Shannons Originalarbeit zitieren. Dabei trat aber folgendes Problem auf: Der Einzig passende Satz lautet

Theorem 10: If the correction channel has a capacity equal to [mm] H_y(x) [/mm] it is possible to so encode the correction data as to send it over this channel and correct all but an arbitrarily small fraction epsilon of the errors.
This is not possible if the channel capacity is less than [mm] H_y(x). [/mm]

[mm] (H_y(x) [/mm] ist scheinbar die Äquivokation)

Irgendwie passt das aber nicht zu meiner Vorstellung vom Kanalcodierungssatz der eine Kapazität > R verlangt und sagt dass es dann einen Code mit Informationsrate > R gibt.
Weiß jemand Rat?????

        
Bezug
Kanalcodierunssatz bei Shannon: Korrekturkanal
Status: (Antwort) fertig Status 
Datum: 10:39 Sa 13.01.2007
Autor: Infinit

Hallo Gilga,
wenn ich das Theorem richtig verstehe, so basiert es auf dem folgenden Modell: Man hat eine gestörte Übertragung zwischen Quelle und Sender, diese Übertragung wird von einem Beobachter gemonitort, so dass dieser feststellen kann, was gesendet und was empfangen wurde. Hierbei treten Differenzen auf, die dieser Beobachter korrigieren kann, indem er Zusatzinformationen an den Empfänger sendet über einen ungestörten Kanal. Dies ist die Größe [mm] H_y (x) [/mm], die beschreibt, wieviel Information pro Sekunde geliefert werden muss, um die empfangene Nachricht zu korrigieren. Hierfür muss die Kapazität des Zusatzkanals, über den diese Nachricht übertragen wird,  groß genug sein, um diese Information übertagen zu können und dies ist doch genau die Shannonsche Aussage zur Kanalkapazität bei einer ungestörten Übertragung. Dies passt doch genau zu Deiner Aussage am Ende Deines Beitrags.
Ich hoffe, diese kleine Überlegung hilft Dir weiter.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]