Karnaugh und QuineMcCluskey < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:27 Mi 03.11.2010 | Autor: | Zelos |
Aufgabe | Gegeben sei die Funktion
f(a,b,c,d) := [mm] \overline{a}b\overline{c}d [/mm] + abcd + [mm] ab\overline{c}d [/mm] + [mm] \overline{a}bcd
[/mm]
Vergleichen Sie Ihre Lösung von Teil b) mit dem Muster der eingetragenen Nullen und Einsen aus Teil a). Was fällt Ihnen auf?
Lösung Teil b): f(a,b,c,d) = bd (nach QuineMcCluskey) |
Ich weiß hier nicht genau, was ich da schreiben sollte.
Ich soll also das Ergebnis (= bd) mit dem Muster dieser Tabelle hier vergleichen und sagen, was mir auffällt. Mir fällt aber gar nichts Besonderes auf. Was ist denn der Zusammenhang des Diagramms und der Lösung "bd"?
Die Tabelle ist diese hier (bevor ich mich daran totschreibe):
[Dateianhang nicht öffentlich]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:54 Mi 03.11.2010 | Autor: | etoxxl |
Wenn du dir die Tabelle genau anschaust,
dann merkst du, dass da ein 1er-Block ist, der aus 2x2 Kästchen besteht.
Wenn du dir anschaust für welche Variablen dieser Block auftaucht,
dann sieht man : b=1 und d=1, als bd.
Durch zusammenfassen solcher 1er-Blöcke und durch ablesen der dazugehörigen Variablen, die auf 1 gesetzt sind, da wo die Blöcke auftauchen, kann man lange logische Funktionen minimieren.
Wie man die Blöcke wählen darf, werdet ihr sicherlich noch lernen.
Wichtig ist aber auf jeden Fall, dass sie von der Größe [mm] 2^n [/mm] sind.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:02 Mi 03.11.2010 | Autor: | Zelos |
Also könnte ich als Antwort auf die Frage einfach sagen, dass die 1 am Ausgang auftritt, wenn b und d beide 1 sind, jedoch für sowohl a als auch c eine 1 auftaucht, egal ob 0 oder 1 sind, weshalb sie zum Ergebnis nichts beitragen... was dazu führt, dass sie aus dem Primterm von QuineMCCluskey rausfallen und "b und d" bleiben?
|
|
|
|
|
richtig, a und c sind absolut egal für das Ergebnis.
Das kannst du (vielleicht^^) auch sehen wenn du dir den längeren Term anguckst.
Es gibt vier Möglichkeiten für a und c:
$ac, [mm] a\overline{c}, \overline{a}c, \overline{a}\overline{c}$
[/mm]
Genau diese vier Möglichkeiten hast du in der langen Version von f, und sie sind immer mit bd (beide ohne Strich) verknüpft.
Das bedeutet egal welche der vier Möglichkeiten für ac du nun hast, es gibt immer einen Viererblock in dem genau diese Kombination mit bd zusammen drinnsteckt; also ist die Belegung von ac vollkommen irrelevant für die Lösung und du kannst sie einfach weglassen.
Aber vorsicht:
Sobald du sowas hast
f(a,b,c,d) := $ [mm] \overline{a}b\overline{c}d [/mm] $ + [mm] abc\red{\overline{d}} [/mm] + $ [mm] ab\overline{c}d [/mm] $ + $ [mm] \overline{a}bcd [/mm] $
geht es nicht mehr, da die ac's nicht mehr immer mit dem selben verknüpft sind - sie sind also absolut nicht egal.^^
|
|
|
|