www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKarte eines Paraboloids
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Karte eines Paraboloids
Karte eines Paraboloids < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Karte eines Paraboloids: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Fr 15.12.2006
Autor: CampDavid

Aufgabe
Geben Sie eine 2-dimensionale Karte an für das Paraboloid
P = {(x,y,z) [mm] \in \IR³ [/mm] : z = x² + y²}. Ist P sogar diffeomorph?

Hallo,

ich komme mit dem Thema Karten noch überhaupt nicht Klar.
Vielleicht könnte mir jemand an Hand dieser Aufgabe das Thema etwas näher bringen.
Ich muss doch von einer offenen Umgebung auf meinem Paraboloiden eine Abbildug in eine offene Menge im [mm] \IR^2 [/mm] finden und das ist dann meine Karte oder liege ich da falsch?
Und wie finde ich so eine Abbildung?

Vielen Dank!
mfg campdavid




        
Bezug
Karte eines Paraboloids: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Fr 15.12.2006
Autor: leduart

Hallo
Die 2-d Karte ist einfach ein Höhenlinienbild des Paraboloids.d.h. linien für h=z=konst, z.Bsp. z=1; 2;... n oder andere äquidistante Werte von z.
Wäre es ein Kegel, [mm] z^2=x^2+y^2 [/mm] dann wären es konzentrische Kreise um (0,0), die alle denselben Abstand haben. theoretisch steht an jedem Kreis die Höhe, dem Bild allein kann man nicht ansehen, ob der Kegel nach oben oder unten geöffnet ist.
Man kann aber statt der Beschriftung angeben, welche Höhendifferenz die Linien haben, und dass sie wachsend von 0 bis .. gehen.
Damit das kein Kegel, sondern ein Paraboloid ist, sind es wieder konzentrische Kreise, aber nicht äquidistant. Zeichne das Ding im Schnitt, z.Bsp in der z-x Ebene, y=0. damit du die Zuordnung der Linien besser siehst. Die Kreise werden nach aussen immer enger.
Wer jemals im Gebirge richtig gewandert ist, kann solche Karten sehr gut lesen.
Übrgens; Vektoranalysis ist das sicher nicht!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]