www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTransformationenKegelschnitt transformieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Transformationen" - Kegelschnitt transformieren
Kegelschnitt transformieren < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelschnitt transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Fr 20.04.2012
Autor: racy90

Hallo,

Ich stehe gerade an bei einer Aufgabe.

Die Kegelschnittslinie : [mm] x^2+xy+y^2=17 [/mm] soll durch eine  Drehung des Koordinatensys. auf Hauptachsenform gebracht werden und dann die neue Basis angeben werden.

Die Eigenwerte der Matrix sind ja  [mm] \lambda_1=1/2 [/mm] und [mm] \lambda_2=3/2 [/mm]

Ev sind bei mir -2 und 2

Aber dann bin ich mir nicht mehr sicher was ich tun soll.Ich hab gelesen ich soll die Matrix die meine EV enthaltet orthonormieren

        
Bezug
Kegelschnitt transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Fr 20.04.2012
Autor: MathePower

Hallo  racy90,

> Hallo,
>  
> Ich stehe gerade an bei einer Aufgabe.
>  
> Die Kegelschnittslinie : [mm]x^2+xy+y^2=17[/mm] soll durch eine  
> Drehung des Koordinatensys. auf Hauptachsenform gebracht
> werden und dann die neue Basis angeben werden.
>  
> Die Eigenwerte der Matrix sind ja  [mm]\lambda_1=1/2[/mm] und
> [mm]\lambda_2=3/2[/mm]
>  
> Ev sind bei mir -2 und 2
>  


Das sind sie sicher nicht.

Die Eigenvektoren sind doch von der Form:[mm]\pmat{u \\ v}[/mm] mit [mm]u^{2}+v^{2} > 0[/mm]


> Aber dann bin ich mir nicht mehr sicher was ich tun
> soll.Ich hab gelesen ich soll die Matrix die meine EV
> enthaltet orthonormieren


Ja, das ist richtig.


Gruss
MathePower

Bezug
                
Bezug
Kegelschnitt transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Fr 20.04.2012
Autor: racy90

Wieso stimmen meine EV nicht?

Wenn ich [mm] \lambda_1=1/2 [/mm] in [mm] \pmat{ 1-\lambda & 1/2 \\ 1/2 & 1-\lambda } [/mm] einsetze bekomme ich [mm] \pmat{ 1/2 & 1/2 \\ 1/2 & 1/2 } [/mm]

[mm] \pmat{ 1/2 & 1/2 \\ 1/2 & 1/2 }*\vektor{x \\ y}=\vektor{0 \\ 0} [/mm]

2.Zeile -1.Zeile ergibt [mm] \pmat{ 1/2 & 1/2 \\ 0 & 0 }*\vektor{x \\ y}=\vektor{0 \\ 0} [/mm]
1/2x=-1/2y  Wenn ich nun für x=-2 und y=2 stimmt mein GLS


Ich könnte auch x=1 und y=-1 nehmen sollte ebenfalls stimmen oder habe ich hier einen denkfehler

Bezug
                        
Bezug
Kegelschnitt transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Fr 20.04.2012
Autor: leduart

Hallo
niemand versteht dich wenn du sagst die Eigenvektoren sind -2 und 2 wenn du meinst ein Eigenvektor ist [mm] \vektor{-2 \\ 2} [/mm]
der ist richtig.
Gruss leduart

Bezug
                                
Bezug
Kegelschnitt transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 So 22.04.2012
Autor: racy90

Ich habe nun meine orthonormierten EV : [mm] \vektor{-1/\wurzel{2}\\ 1/\wurzel{2}} [/mm] und [mm] \vektor{1/\wurzel{2}\\ 1/\wurzel{2}} [/mm]

aber wie komme ich nun auf die Hauptachsenform bzw wie sieht meine neue Basis aus?

Bezug
                                        
Bezug
Kegelschnitt transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 So 22.04.2012
Autor: leduart

Hallo
wiki  unter Hauptachsentransformation hat das schon alles aufgeschrieben, oder es steht in dinem skript oder Buch!
Gruss leduart


Bezug
                                                
Bezug
Kegelschnitt transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 22.04.2012
Autor: racy90

das verstehe ich aber nicht ganz

ich habe meine Matrix S die aus orthonormierten Eigenvektoren besteht

S= [mm] \pmat{ -1/\wurzel{2} & 1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2} } [/mm]

[mm] S^{-1} =S^T =\pmat{ -1/\wurzel{2} & 1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2} } [/mm]

und was soll ich dann tun

Weil auf Wikipedia steht ich soll A= [mm] SDS^{T} [/mm] berechnen und dann soll eingentlich schon die Hauptachsenform dastehen

Bezug
                                                        
Bezug
Kegelschnitt transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 So 22.04.2012
Autor: MathePower

Hallo racy90,

> das verstehe ich aber nicht ganz
>  
> ich habe meine Matrix S die aus orthonormierten
> Eigenvektoren besteht
>  
> S= [mm]\pmat{ -1/\wurzel{2} & 1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2} }[/mm]
>  
> [mm]S^{-1} =S^T =\pmat{ -1/\wurzel{2} & 1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2} }[/mm]
>  
> und was soll ich dann tun
>  
> Weil auf Wikipedia steht ich soll A= [mm]SDS^{T}[/mm] berechnen und
> dann soll eingentlich schon die Hauptachsenform dastehen


In Matrixschreibweise steht doch dann da:

[mm]\pmat{x & y}A\pmat{x \\ y}=17[/mm]

Setze jetzt die Transformation

[mm]\pmat{x \\ y}=S \pmat{u \\ v}[/mm]

in diese Gleichung ein.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]