www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKern und Bild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Kern und Bild
Kern und Bild < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 16.02.2011
Autor: diddy449

Aufgabe
Sei F:V-->W eine lin Abb und V,W x-beliebige Vektorräume
Wie bestimmt man Kern und Bild von F

Meine Idee,
wäre erstmal eine Basis aus V durch F zu jagen und dann zu schauen ob ihre Elemente noch lin unab sind.
Sind sie es, so kann ich ja die Bilder dieser Basis als Basis für Bild F nehemen.
Sind die Bilder lin ab. so würde ich die Darstellungsmatrix bzgl. der gewählten Basen bestimmen, Lös(Darstellunsmatrix,0)bestimmen, die aus Lös erhaltenen vektroren als Koeffizienten für die Basis des Definitonsbereichs auffassen und dessen ergebnis als Basis von Kern F nehmen.
Und für die Basis für Bild f würde ich den die Darstellungsmatrix transponieren und dann ihre lin unab zeilen als Koeffizienten für eine Lk mit der Basis des Bildbereichs auffassen und dessen ergebnis würde ich als Basis für Bild F nehmen.

1. Ist das richtig so?
2. geht das auch leichter?





        
Bezug
Kern und Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 16.02.2011
Autor: wieschoo


> Sei F:V-->W eine lin Abb und V,W x-beliebige Vektorräume
>  Wie bestimmt man Kern und Bild von F

>  Meine Idee,
>  wäre erstmal eine Basis aus V durch F zu jagen und dann
> zu schauen ob ihre Elemente noch lin unab sind.
> Sind sie es, so kann ich ja die Bilder dieser Basis als
> Basis für Bild F nehemen.
>  Sind die Bilder lin ab. so würde ich die
> Darstellungsmatrix bzgl. der gewählten Basen bestimmen,
> Lös(Darstellunsmatrix,0)bestimmen, die aus Lös erhaltenen
> vektroren als Koeffizienten für die Basis des
> Definitonsbereichs auffassen und dessen ergebnis als Basis
> von Kern F nehmen.
> Und für die Basis für Bild f würde ich den die
> Darstellungsmatrix transponieren und dann ihre lin unab
> zeilen als Koeffizienten für eine Lk mit der Basis des
> Bildbereichs auffassen und dessen ergebnis würde ich als
> Basis für Bild F nehmen.
>  
> 1. Ist das richtig so?
>  2. geht das auch leichter?

Oh ja. Meine ich zumindestens. Kann natürlich sein, dass du das auch meinst.
F ist eine lineare Abbildung. Wenn dim V= n & dim W =m, dann ist [mm] $A_f\in \IR{m\times n}$ [/mm]
Dann kann wie üblich den Kern einer Matrix bestimmen.
[mm] $Ker(A)=\{x\in \IR^{n} \; |\; Ax=0 \}$ [/mm] (Lös. hom. LGS)
Bild sind die restlichen Spalten der Matrix. Natürlich kann man theoretisch viel herumrechnen. Jedoch würde ich immer einen Lösungsweg bevorzugen, der immer geht.

C.F. Gauß: "Das (..) Verfahren lässt sich halb im Schlaf ausführen oder man kann während derselben an andere Dinge denken."


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]