Kernfunktion < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:13 Di 04.08.2015 | Autor: | Alan64 |
Hallo, könnt Ihr mir mal sagen, ob das so stimmt?
Und korrigieren was nicht passt - Danke :)
Für die Nichtparametrische Dichteschätzung ist K(t) eine Kernfunktion mit vier Eigenschaften.
1. [mm] \integral_{}^{} [/mm] K(t) dt = 1
2. [mm] \integral_{}^{} [/mm] tK(t) dt = 0
3. [mm] \integral_{}^{} [/mm] t^2K(t) dt = 1
4. [mm] \integral_{}^{} K^2(t) [/mm] dt < [mm] \infty
[/mm]
Meine Interpretation davon:
1. Kernfunktion muss Dichte sein, Fläche unter dem Integral ist 1
2. Erwartungswert der Dichte ist 0. Warum soll das Null sein? Gilt das bezogen auf Standardnormal?
3. Die Varianz soll 1 sein. Warum? Auch wegen ~N(0,1)?
4. Was ist das? Jeder Wert muss endlich sein? D.h. die Funktion ist durchgängig definiert, oder? Was mich hier besonders verwirrt: warum K hoch 2?
Grüße
Alan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:25 Mi 05.08.2015 | Autor: | huddel |
Hi Alan,
meine Frage wäre erstmal, ob du bei $K$ von dem Kern selbst, oder der Kerndichteschätzung redest.
Je nach dem ergibt das eine mehr Sinn als das andere :D
1. in beiden Fällen (ob Kern oder Dichteschätzer) ist ds Ziel eine Dichte zu bekommen, also ganz richtig
2. Ergibt nur im Fall des Kerns einen Sinn, wenn du als Kern eine Verteilung mit Erwartungswert 0 nimmst (z.B. Std.Normalverteilung). Beim schätzen gehts ja darum, jede beliebige Dichte zu schätzen, welche natürlich auch anders verteilt sein kann (z.B. eine Normalverteilung mit [mm] $\sigma^2 [/mm] = 1$).
3. Gilt im grunde das gleiche wie bei 2. Wir möchten ja beliebige Dichten schätzen.
4. Stichwort "Quadratintegrierbarkeit". Daraus folgen einige schöne Eigenschaften. Guck dir das mal im allgemeinen an, ist in manchen Bereichen hilfreich. Für deine Frage ergibt das eigentlich nur bei der Schätzung einen Sinn, da die Dichte der Normalvertilung schon quadratintegrierbar ist.
Zusammen kann man so natürlich auch die Std-Normalverteilung charakterisieren, aber irgendwie finde ich das seltsam, dass ihr dann nur die Std.Norm.Vert. als Kern nehmt, man könnte jede beliebige Dichte nehmen.
Ich hoffe nur, dass ich nicht irgendawas völlig verplant hab :D
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:22 Mi 05.08.2015 | Autor: | Alan64 |
K soll die Kernfunktion sein.
"Zusammen kann man so natürlich auch die Std-Normalverteilung charakterisieren, aber irgendwie finde ich das seltsam, dass ihr dann nur die Std.Norm.Vert. als Kern nehmt, man könnte jede beliebige Dichte nehmen." - Das war nur meine eigene Interpretation, es wurde wohl dazu gesagt, dass man jede beliebige Funktion nehmen kann, die gewisse Eigenschaften erfüllt.
Verstanden hab ich Ganze das leider noch nicht. Ich wüsste jetzt aber auch nicht welche Fragen ich stellen müsste.
Also hab schonmal vielen Dank.
Den Wikipediaartikel zu Quadratintegrierbarkeit hab ich nicht verstanden. In meinen Mathebüchern steht sowas auch nicht drin, ich schau nächste Woche mal in der Bib.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:42 Do 06.08.2015 | Autor: | huddel |
Ich seh das jetzt erst... macht ihr das in der Schule? dann ist auch klar, warum du in deinen Mathebüchern nichts findest. Das ist Stoff der Analysis 2-3 Vorlesung. Wirst du also, wenn das tatsächlich Schulstoff sein sollte, nicht wirklich brauchen. Ich hab jetzt nochmal rumgelesen und die genannten Eigenschaften sollen den Epanechnikov-Kern charakterisieren. Das kannst du dir nochmal genauer angucken. Da muss ich jedoch zugeben, dass ich mich damit noch nicht genauer beschäftigt habe...
Nur der Volsteändigkeit halber ein Beispiel: die Cauchy-Verteilung, oder besser, deren Dichte, kann als Kernfunktion genutzt werden. Dabei hat diese Verteilung weder einen Erwartungswert, noch eine Varianz, noch irgendwelche Momente (also insbesondere ist sie auch nicht quadratintegrierbar) ist aber trotzdem ein belieber Kern, da sie andere tolle Eigenschaften hat.
Wenn du irgendwann wieder eine Frage formulieren kannst, stehe ich natürlich gern zur Verfügung :)
LG
|
|
|
|