Kettenbruch < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:16 So 27.04.2014 | Autor: | Leon89 |
Aufgabe | Darstellung von der Kettenbruchentwicklung von Wurzel (3). Es ist ein unendlicher Kettenbruch. Dann ist x = 1 + (1 / (1 + (1 / 1+x ))). Durch Vereinfachung des rationalen Ausdrucks auf der rechten Seite und der Multiplikation beider Seiten mit 2 +x erhält man 2x + [mm] x^2 [/mm] = 3 + 2x. |
Wieso mulitpiziere ich mit 2 + x ? Wie komme ich auf die 2 + x ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:45 So 27.04.2014 | Autor: | felixf |
Moin!
> Darstellung von der Kettenbruchentwicklung von Wurzel (3).
> Es ist ein unendlicher Kettenbruch. Dann ist x = 1 + (1 /
> (1 + (1 / 1+x ))). Durch Vereinfachung des rationalen
> Ausdrucks auf der rechten Seite und der Multiplikation
> beider Seiten mit 2 +x erhält man 2x + [mm]x^2[/mm] = 3 + 2x.
>
> Wieso mulitpiziere ich mit 2 + x ? Wie komme ich auf die
> 2 + x ?
Nun, du Vereinfachst erstmal den rationalen Ausdruck auf der rechten Seite. Dann hast du sowas wie $x = [mm] \frac{f(x)}{g(x)}$ [/mm] mit Polynomen $f, g$. Wenn du das hast, wird $g(x)$ in diesem Fall gerade $2 + x$ sein. Deswegen wird hier mit $2 + x$ multiplizierst, um das ganze als Gleichheit zweier Polynome zu schreiben.
Bei einem anderen Kettenbruch musst du also nicht mit $2 + x$ multiplizieren, sondern mit dem Nenner den du da erhaelst.
LG Felix
|
|
|
|