www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteKettenbruch Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Kettenbruch Konvergenz
Kettenbruch Konvergenz < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenbruch Konvergenz: Konvergenzsatz beweisen
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 28.12.2009
Autor: TNA-619

Ich habe diese Frage auch hier
http://www.matheboard.de/thread.php?threadid=406247
gestellt. (noch keine Antwort)

Hi,

habe folgende Aufgabe bekommen:

Bestimme:
[mm] 1+\frac{1}{2+\frac{1}{2+\frac{1}{2+...}}} [/mm]

ist nicht wirklich schwierig:

Der Wert ist die positve Lösung von:

[mm] x-1=\frac{1}{x+1}, [/mm]

also [mm] \sqrt{2} [/mm]

allerdings muss man doch hier bereits annehmen, dass es diese Zahl gibt, bzw. dass der Grenzwert der Kettenbruchentwicklung existiert.

Wie kann ich das also zeigen?

Die Näherungsbrüche sind offensichtlich durch 1 und 2 beschränkt. Allerdings ist die Folge nicht monoton.

Von Wikipedia:
Sei [mm] b_n>0 [/mm] für alle n. Dann konvergiert der Kettenbruch [mm] \underset{i=1}{\overset{\infty}{\mathbf{K}}} \frac{1}{b_i} [/mm] genau dann, wenn die Reihe [mm] \sum_{i=1}^\infty b_i [/mm] divergiert.

Daraus würde die Konvergenz unmittelbar folgen - aber ich will auch keinen Satz verwenden, den ich vorher noch nie gehört habe...

daher wäre ich für eine Beweisskizze für diesen Satz sehr dankbar

natürlich sind auch andere Konvergenzbeweise gern gesehen  ;)
(Cauchy'sches Konvergenzkriterium vielleicht? die Kettenbrüche sind so unschön zum Rechnen :D)

grüße :)

        
Bezug
Kettenbruch Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 28.12.2009
Autor: reverend

Hallo TNA-619,

lies doch mal den ersten Satz in []diesem Abschnitt.

Wenn Du den Grenzwert des Kettenbruchs schon bestimmen konntest, dann konvergiert der Kettenbruch auch.

lg
reverend

Bezug
                
Bezug
Kettenbruch Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 28.12.2009
Autor: TNA-619

Ok, danke reverend

Weiß jemand, wie man diesen Konvergenzsatz

Sei [mm]b_n>0[/mm] für alle n. Dann konvergiert der Kettenbruch [mm]\underset{i=1}{\overset{\infty}{\mathbf{K}}} \frac{1}{b_i}[/mm] genau dann, wenn die Reihe [mm]\sum_{i=1}^\infty b_i[/mm] divergiert.

beweist?

Demnach müsste
[mm]\underset{n=1}{\overset{\infty}{\mathbf{K}}} \frac{1}{\frac 1 n}[/mm] konvergieren (weil die harmonische Reihe divergiert)

hab mal bis 10000 ausrechnen lassen und bin auf etwa
[mm]\underset{n=1}{\overset{10000}{\mathbf{K}}} \frac{1}{\frac 1 n}\approx 0.5708[/mm] gekommen. Ist der genaue Wert bekannt?
(Es konvergiert ziemlich langsam...die harm. Reihe war wohl ein schlechtes Beispiel ;) )

grüße

PS: Kennt jemand irgendwelche Artikel (Links?) oder Bücher, die sich mit Kettenbrüchen beschäftigen? Das Thema interessiert mich :)


Bezug
                        
Bezug
Kettenbruch Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mo 28.12.2009
Autor: reverend

Hallo nochmal,

lies mal []hier die Seiten 507 bis 513. (Auszug aus Otto Stolz, Josef Anton Gmeiner, Einführung in die Funktionentheorie, Leipzig 1905 u.ö.)

lg
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]