www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKettenregel und Produktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Kettenregel und Produktregel
Kettenregel und Produktregel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel und Produktregel: Frage
Status: (Frage) beantwortet Status 
Datum: 19:56 Do 16.12.2004
Autor: firegirl1124

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe wieder einmal ein Haufen Mathe-Hausaufgaben gemacht.
Und brauch mal Hilfe....

Meine Aufgabe: Differenzieren Sie mithilfe der Ketten- und Produktregel!

a) f(x)=x(x+1)  ^{4}
b) f(x)=(5x-2) * (3x+2) ^{8}

Ich bin irgendwie durch einander. Was muss ich nun zuerst machen.

Bei a) habe ich so angefangen f'(x)=4x(x+a) ^{3} ist das richtig?

Hoffe auch schnelle Antwort!

MfG
Fire



        
Bezug
Kettenregel und Produktregel: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Do 16.12.2004
Autor: kannnichtalles

Also , die Kettenregel kannst du mit dieser Formel bestimmen: u'(v(x))+v'(x)
Die Produktregel mit dieser: u'(x)*v(x)+u(x)*v'(x)
Wendest du das auf deine beiden Aufgaben an, bekommst folgende ungefähre Ergebnisse raus, die du dann aber eventuell selber vereinfachen kannst:

a)4x(x+1)³+1 [mm] b)5(3x+2)^8+(5x-2)(8(3x+2)^7) [/mm]

hoffe ich konnte dir etwas helfen.

Bezug
        
Bezug
Kettenregel und Produktregel: Mitteilung = falsch
Status: (Antwort) fertig Status 
Datum: 20:28 Do 16.12.2004
Autor: Disap

Meine Güte, die Kettenregel ist nicht u' + v', sondern u' * v'


> Meine Aufgabe: Differenzieren Sie mithilfe der Ketten- und
> Produktregel!
>  
> a) f(x)=x(x+1)  ^{4}

> Bei a) habe ich so angefangen f'(x)=4x(x+a) ^{3} ist das
> richtig?

Nein....
unsere funktionsgleichung:

[mm] f(x)=x(x+1)^{4} [/mm]

das ^4 ist die äußere Ableitung, nennen wir sie g(x)
das  (x+1) unser h(x)
Da dies eine Verkettung ist, müssen wir das ableiten mit h'(x)*g'(x)

=>  4 * 1 [mm] (x+1)^{3} [/mm]
Die +1 in der Klammer bleibt bestehen! Auf Grund dieser Verkettung

das h'(x) und g'(x) ist theoretisch das u' und das v' strich, aber das würde ich gerne bei der Produktregel anwenden, denn diese besagt:

u' * v + v' *u

u ist unser x
und v ist unser [mm] (x+1)^{4} [/mm]
v' haben wir ja schon ermittelt: [mm] 4(x+1)^{3} [/mm]
u' = 1

Daraus folgt das Ergebnis für Aufgabe a:
[mm] 1*(x+1)^{4} [/mm]  + [mm] x*4(x+1)^{3} [/mm]

Bezug
        
Bezug
Kettenregel und Produktregel: Aufgabe B - Lösung
Status: (Antwort) fertig Status 
Datum: 21:02 Do 16.12.2004
Autor: Disap

(5x-2) * [mm] (3x+2)^{8} [/mm]  ist unsere Funktion

ich würde vorschlagen, wir betrachten wieder einen teil
(5x-2) = u
(3x+2 [mm] )^{8} [/mm] =v
5 = u'

v' = 8 * 3 [mm] (3x+2)^{7} [/mm]

Daraus folgt:
f'(x) = [mm] 5(3x+2)^{8} [/mm] + [mm] 24(3x+2)^{7}*(5x-2) [/mm]

Natürlich kann man durch Basteln den Term noch vereinfachen, genau wie bei Aufgabe a
Hier würde herauskommen: (3x + [mm] 2)^{7}*(135x [/mm] - 38), ist jedoch das selbe

Liebe Grüße Disap



(Edit: Die Farben/Fettmarkierungen sind der allergrößte Mist. Entweder nicht benutzerfreundlich oder sie funktionieren nicht so super)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]