www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKleinste-Qudrate Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Kleinste-Qudrate Schätzer
Kleinste-Qudrate Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinste-Qudrate Schätzer: Eigenschaften?
Status: (Frage) beantwortet Status 
Datum: 12:41 Fr 15.09.2006
Autor: kringel

Hallo zusammen, ich mache mir Gedanken über die Eigenschaften von dem kleinsten Quadrate Schätzer. Allgemein würde ich sagen, der KQ-Schätzer sei ein M-Schätzer.  Betrachten wir ein lineares Modell mit unabhängigen [mm] $N(0,\sigma^2)$-verteilten [/mm] Fehlern, so würde ich weiter sagen, der KQ-Schätzer sei erwartungstreu, äquivariant und UMVU. (Stimmt das so?)
Jetzt interessieren mich zwei Dinge:
a) Wie steht es mit anderen Eigenschaften (UMRE, Zulässig, Minimax, extended Bayes, Bruchpunkt, sensitivität)
b) Welche Eigenschaften gelten für welche Modelle? Unabhängig vom Modell?

Ich danke für eure Hife!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kleinste-Qudrate Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Sa 16.09.2006
Autor: BAGZZlash

Was sind M-Schätzer und was ist UMVU?
Allgemein ist OLS BLUE (best linear unbiased estimator), bei normalverteilten Residuen kann die Linearität sogar weggelassen werden.
Sind die Residuen [mm]u_{t} \sim N(0,\sigma^{2})[/mm], ist der Schätzer erwartungstreu (unverzerrt - unbiased), das ist richtig, Normalverteilung ist dafür jedoch nicht unbedingt erforderlich. Es reicht, wenn der stochastische Prozess der Residuen schwach stationär ist, oder sogar noch weniger, er muß sogar nur einen Erwartungswert von Null haben. Das bedeutet, selbst wenn [mm](u_{t})_{t \in \IZ}[/mm] instationär ist (z.B. ein random walk), so ist OLS erwartungstreu, allerdings wegen der nicht konstanten Varianz dann natürlich nicht mehr konsistent. Aber: Bei konstanter Varianz ist OLS konsistent! Außerdem ist OLS effizient, was das "best" von BLUE schon andeutet: Es wird die Cramer-Rao-Varianzuntergrenze erreicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]