www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKnobelaufgabe: harmonische Rei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Knobelaufgabe: harmonische Rei
Knobelaufgabe: harmonische Rei < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knobelaufgabe: harmonische Rei: Konvergenz
Status: (Frage) beantwortet Status 
Datum: 21:23 Mo 01.12.2008
Autor: little_moon

Aufgabe
Es sei $M := [mm] \{n\in\IN\mid n \ \text{besitzt keine 9 in der Dezimaldarstellung}\}$, [/mm] also $M = [mm] \IN \setminus\{9, 19,29 ...\}$ [/mm] .
Man entscheide mit Begründung, ob die Reihe [mm] $\summe_{i=1}^{n} \frac{1}{n}$ [/mm] konvergiert.

Die Aufgabe klingt eigentlich ganz logisch, allerdings wurde uns gesagt, dass sie konvergiert. Bei mir divergiert sie aber...

Kann mir vll jemand helfen?

Vielen Dank!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Knobelaufgabe: harmonische Rei: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Di 02.12.2008
Autor: reverend

[mm]M = \IN \setminus\{9, 19,29 ...\}[/mm]
Die ausgenommene Menge solltest Du Dir mal genauer anschauen. Die "..." enthalten den Weg zur Lösung. Auf den ersten Blick scheint es ja, als würde ein Zehntel der Zahlen ausgenommen.

Wieviele Zahlen unter 100 enthalten eine 9 an beliebiger Stelle? Wieviele unter 1000, einer Million, einer Milliarde? Fällt Dir daran etwas auf?



Bezug
                
Bezug
Knobelaufgabe: harmonische Rei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Di 02.12.2008
Autor: Alita

bis 10 enthalten [mm] \bruch{1}{10} [/mm] der Zahlen eine 9,
bis 100 [mm] \bruch{1}{10} [/mm] + [mm] \bruch{1}{10} [/mm] - [mm] \bruch{1}{100} [/mm]
bis 1000 [mm] \bruch{1}{10} [/mm] + [mm] \bruch{1}{10} [/mm] + [mm] \bruch{1}{10} [/mm] - [mm] \bruch{1}{1000} [/mm] - [mm] \bruch{1}{100} [/mm]
...

weil jede der Ziffern in [mm] \bruch{1}{10} [/mm] der Fälle eine Neun enthält, abzüglich der Fälle, bei denen mehrere Neunen vorkommen (da diese ja schon gezählt wurden).

Es werden also immer mehr, aber leider hilft mir das beim Beweis der Konvergenz nicht so richtig...

Bezug
                        
Bezug
Knobelaufgabe: harmonische Rei: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Di 02.12.2008
Autor: reverend

Na, dann hilft vielleicht eine Umformulierung Deiner Beobachtung "es werden immer weniger".

Von den [mm] 10^n [/mm] Zahlen von 0 bis [mm] 10^n-1 [/mm] enthalten genau [mm] \left(\bruch{9}{10}\right)^n [/mm] Zahlen keine 9 in der Dezimaldarstellung.

Vielleicht hilft Dir diese Feststellung ja, eine konvergente Majorante zu finden?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]