www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKoeffizient, Fourierreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Koeffizient, Fourierreihe
Koeffizient, Fourierreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizient, Fourierreihe: Hilfestellung, Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 15:35 Fr 13.05.2011
Autor: Marcel08

Hallo zusammen!


In dem folgenden Ausschnitt einer Rechnung kann ich einen Schritt nicht nachvollziehen:


(1) [mm] \integral_{\varphi=0}^{\alpha}{\Phi_{0}*sin(\bruch{n\pi}{\alpha}\varphi){d\varphi}}=\summe_{m=1}^{\infty}b_{m}\rho_{0}^{\bruch{m\pi}{\alpha}}\underbrace{\integral_{\varphi=0}^{\alpha}{sin(\bruch{m\pi}{\alpha}\varphi)*sin(\bruch{n\pi}{\alpha}\varphi){d\varphi} }}_{\bruch{\alpha}{2}\delta_{m,n}} [/mm]


(2) [mm] b_{n}=\bruch{2}{\alpha}\rho_{0}^{-\bruch{n\pi}{\alpha}}\integral_{\varphi=0}^{\alpha}{\Phi_{0}*sin(\bruch{n\pi}{\alpha}\varphi){d\varphi}} [/mm]



Meine Frage:

Ich würde gerne wissen, warum man beim Übergang von Gleichung (1) nach Gleichung (2) das Summenzeichen einfach weglassen darf. Welche Rechenregel für Summen kommt hier zum Einsatz? Über einen hilfreichen Tipp würde ich mich freuen; vielen Dank.



Viele Grüße, Marcel



        
Bezug
Koeffizient, Fourierreihe: Gleichhheit
Status: (Antwort) fertig Status 
Datum: 16:34 Fr 13.05.2011
Autor: Infinit

Hallo Marcel,
der Grund für diese Vereinfachung ist in der geschweiften Unterklammer angedeutet. Dieses Integral liefert nur einen Beitrag, wenn m=n gilt. Das Ergebnis wird als [mm] \bruch{\alpha}{2} [/mm] bezeichnet und landet dann als Kehrwert auf der linken Seite der Gleichung.
Du kannst ja mal nachrechnen, ob dies stimmt:
Für [mm] |a| \neq |b| [/mm] gilt
[mm] \int \sin ax \sin bx \, dx = \bruch{\sin (a-b)x}{2(a-b)} - \bruch{\sin (a+b)x}{2(a+b) } [/mm]
Viele Grüße,
Infinit


Bezug
                
Bezug
Koeffizient, Fourierreihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:52 Sa 14.05.2011
Autor: Marcel08

Hallo!


Zunächst einmal vielen Dank für deine Antwort. Ja, das habe ich soweit verstanden. Trotzdem erkenne ich nicht, was mit dem Summenzeichen passiert. In der unteren Gleichung hat man alle m´s und n´s in n´s umgewandelt, um eben einen Wert [mm] \not= [/mm] 0 zu errechnen. Was aber passiert mit dem m in der unteren Grenze der Summe? Muss dieses m denn nicht auch mit übertragen werden? Wieso kommt es nicht zu einer Grenzwertberechnung der Reihe?



Viele Grüße, Marcel

Bezug
                        
Bezug
Koeffizient, Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Sa 14.05.2011
Autor: fred97

Es ist


$ [mm] \integral_{\varphi=0}^{\alpha}{\Phi_{0}\cdot{}sin(\bruch{n\pi}{\alpha}\varphi){d\varphi}}=\summe_{m=1}^{\infty}b_{m}\rho_{0}^{\bruch{m\pi}{\alpha}}\underbrace{\integral_{\varphi=0}^{\alpha}{sin(\bruch{m\pi}{\alpha}\varphi)\cdot{}sin(\bruch{n\pi}{\alpha}\varphi){d\varphi} }}_{\bruch{\alpha}{2}\delta_{m,n}} =b_{n}\rho_{0}^{\bruch{n\pi}{\alpha}}\bruch{\alpha}{2}$, [/mm]

da [mm] \delta_{m,n}=0 [/mm] für m [mm] \ne [/mm] n

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]