www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörper und VR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Körper und VR
Körper und VR < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper und VR: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:15 Sa 09.10.2010
Autor: Ersty

Ich habe diese Frage in keinem anderen Forum gestellt!

Hi, ich frage mich gerade, ob folgendes gilt:

Jeder Körper L, der K als Teilkörper enthält, ist ein Vektorraum über K.

Das würde bedeuten, dass [mm] \IC [/mm] sowohl ein [mm] \IR [/mm] - als auch ein [mm] \IQ [/mm] - VR ist.
Stimmt das?

Dann wäre [mm] \IR [/mm] auch ein [mm] \IQ [/mm] -VR, richtig?


Es geht dann aber nicht andersrum:

[mm] \IR [/mm]  als [mm] \IC [/mm] -VR ist keiner, da die Skalaren aus [mm] \IC [/mm] kommen und das Produkt nicht in [mm] \IR [/mm] liegt, richtig?

[mm] \IQ [/mm] als [mm] \IR [/mm] -VR geht auch nicht, da z.B. [mm] \wurzel{2} [/mm] mal "irgendwas" auch kein Element aus [mm] \IQ [/mm] geben würde.

Das würde für mich Sinn ergeben, oder habe ich einen Denkfehler drinne?

Wenn das alles gilt, kann ich immer sagen: Der Körper der einen Teilkörper enthält ist ein VR über dem Teilkörper, aber der Teilkörper ist kein VR über dem Körper, richtig?

Ich bedanke mich jetzt schon und wünsche euch einen schönen Abend!

MFG Ersty

        
Bezug
Körper und VR: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Sa 09.10.2010
Autor: felixf

Moin Ersty!

> Ich habe diese Frage in keinem anderen Forum gestellt!
>  
> Hi, ich frage mich gerade, ob folgendes gilt:
>  
> Jeder Körper L, der K als Teilkörper enthält, ist ein
> Vektorraum über K.
>  
> Das würde bedeuten, dass [mm]\IC[/mm] sowohl ein [mm]\IR[/mm] - als auch ein
> [mm]\IQ[/mm] - VR ist.
>  Stimmt das?

Ja.

> Dann wäre [mm]\IR[/mm] auch ein [mm]\IQ[/mm] -VR, richtig?

[ok]

> Es geht dann aber nicht andersrum:
>  
> [mm]\IR[/mm]  als [mm]\IC[/mm] -VR ist keiner, da die Skalaren aus [mm]\IC[/mm] kommen
> und das Produkt nicht in [mm]\IR[/mm] liegt, richtig?
>  
> [mm]\IQ[/mm] als [mm]\IR[/mm] -VR geht auch nicht, da z.B. [mm]\wurzel{2}[/mm] mal
> "irgendwas" auch kein Element aus [mm]\IQ[/mm] geben würde.

Genau.

(Zumindest geht es nicht "kanonisch", also unter Beibehaltung der bereits existierenden Operationen. Z.B. gibt es eine Bijektion [mm] $\varphi [/mm] : [mm] \IC \to \IR$, [/mm] mit der du [mm] $\IR$ [/mm] mit zwei Operationen [mm] $\oplus$ [/mm] und [mm] $\odot$ [/mm] ausstatten kannst, so dass [mm] $(\IR, \oplus, \odot)$ [/mm] isomorph zu [mm] $(\IC, [/mm] +, [mm] \cdot)$ [/mm] ist; damit ist es via dieser Bijektion auch ein [mm] $\IC$-Vektorraum. [/mm] Aber [mm] $\oplus$ [/mm] und [mm] $\odot$ [/mm] sind ebenso wie [mm] $\varphi$ [/mm] sehr unschoen, haben vor allem nichts mehr mit $+$ und [mm] $\cdot$ [/mm] auf [mm] $\IR$ [/mm] zu tun, weswegen man sowas nicht tut ;-) )

> Das würde für mich Sinn ergeben, oder habe ich einen
> Denkfehler drinne?

Du hast keinen Denkfehler.

> Wenn das alles gilt, kann ich immer sagen: Der Körper der
> einen Teilkörper enthält ist ein VR über dem
> Teilkörper, aber der Teilkörper ist kein VR über dem
> Körper, richtig?

Im Allgemeinen ja. (Der Koerper kann natuerlich gleich dem Teilkoerper sein, dann ist der Teilkoerper ein VR ueber dem Koerper.)

LG Felix


Bezug
                
Bezug
Körper und VR: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 So 10.10.2010
Autor: Ersty

Vielen Dank!

MFG Ersty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]