Körperautomorph. über Polynom. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Aufgabe.)
Sei $K := [mm] \IQ[X]/(X^3+X^2-2X-1)$ [/mm] (ist ein Körper weil Polynom irred. über [mm]\mathbb{Q}[/mm] ist). Zeigen Sie, dass die [mm] $\IQ$-lineare [/mm] Abbildung:
[mm]\sigma: K \rightarrow K: \begin{cases}
1 \mapsto & 1\\
\overline{X} \mapsto & \overline{X}^2-2\\
\overline{X}^2 \mapsto & -\overline{X}^2 -\overline{X} + 3 \end{cases}[/mm]
multiplikativ ist.
Anmerkung: [mm] $\overline{X}$ [/mm] bezeichnet das Bild unter der kanonischen Projektion [mm] $\IQ \rightarrow [/mm] K$ |
Hallo zusammen,
ich habe bereits gezeigt, dass diese Abbildung bijektiv ist, sowie additiv (folgt ja aus der Linearität). Jetzt fehlt mir also nur noch die Multiplikativität und bei der Multiplikation zweier Nebenklassen erhalte ich ja Potenzen von $X$ größer als 2 z.B. ist ja [mm] $\overline{X}^3 [/mm] = [mm] -\overline{X}^2+2\overline{X}+1$. [/mm] Was gilt aber für [mm] $\overline{X}^4$? [/mm] Habe da so meine Probleme.
Freue mich daher auf eure Ratschläge.
Grüße
Joe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:32 Mo 08.07.2013 | Autor: | felixf |
Moin!
> Sei [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] (ist ein Körper weil
> Polynom irred. über [mm]\mathbb{Q}[/mm] ist). Zeigen Sie, dass die
> [mm]\IQ[/mm]-lineare Abbildung:
> [mm]\sigma: K \rightarrow K: \begin{cases}
1 \mapsto & 1\\
\overline{X} \mapsto & \overline{X}^2-2\\
\overline{X}^2 \mapsto & -\overline{X}^2 -\overline{X} + 3 \end{cases}[/mm]
>
> multiplikativ ist.
>
> Anmerkung: [mm]\overline{X}[/mm] bezeichnet das Bild unter der
> kanonischen Projektion [mm]\IQ \rightarrow K[/mm]
> Hallo zusammen,
>
> ich habe bereits gezeigt, dass diese Abbildung bijektiv
> ist, sowie additiv (folgt ja aus der Linearität). Jetzt
> fehlt mir also nur noch die Multiplikativität und bei der
> Multiplikation zweier Nebenklassen erhalte ich ja Potenzen
> von [mm]X[/mm] größer als 2 z.B. ist ja [mm]\overline{X}^3 = -\overline{X}^2+2\overline{X}+1[/mm].
> Was gilt aber für [mm]\overline{X}^4[/mm]? Habe da so meine
> Probleme.
In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch [mm] $\overline{X}^3 [/mm] + [mm] \overline{X}^2 [/mm] - 2 [mm] \overline{X} [/mm] - 1 = 0$, also [mm] $\overline{X}^3 [/mm] = [mm] -\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1$. Und dementsprechend [mm] $\overline{X}^4 [/mm] = [mm] (\overline{X}^3) \cdot \overline{X} [/mm] = [mm] (-\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1) [mm] \overline{X} [/mm] = [mm] -\overline{X}^3 [/mm] + 2 [mm] \overline{X}^2 [/mm] + [mm] \overline{X} [/mm] = [mm] -(-\overline{X}^2 [/mm] + 2 [mm] \overline{X} [/mm] + 1) + 2 [mm] \overline{X}^2 [/mm] + [mm] \overline{X} [/mm] = 3 [mm] \overline{X}^2 [/mm] - [mm] \overline{X} [/mm] + 1$ etc.
Edit: Rechenfehler korrigiert.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:07 Mo 08.07.2013 | Autor: | JoeSunnex |
Hallo Felix,
danke für deine Antwort, jetzt habe ich das Konzept auch endlich vollends verstanden.
>
> In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch
> [mm]\overline{X}^3 + \overline{X}^2 - 2 \overline{X} - 1 = 0[/mm],
> also [mm]\overline{X}^3 = -\overline{X}^2 + 2 \overline{X} + 1[/mm].
> Und dementsprechend [mm]\overline{X}^4 = (\overline{X}^3) \cdot \overline{X} = (-\overline{X}^2 + 2 \overline{X} + 1) \overline{X} = -\overline{X}^3 + 2 \overline{X}^2 + \overline{X} = -(-\overline{X}^2 + 2 \overline{X} + 1) + 2 \overline{X}^2 + \overline{X} = 3 \overline{X}^2 + 3 \overline{X} + 1[/mm]
> etc.
>
Du meinst sicherlich [mm] $3\overline{X}^2-\overline{X}-1$ [/mm] oder? :)
Grüße
Joe
> LG Felix
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:15 Di 09.07.2013 | Autor: | felixf |
Moin Joe,
> danke für deine Antwort, jetzt habe ich das Konzept auch
> endlich vollends verstanden.
schoen :)
> > In dem Restklassenring [mm]K := \IQ[X]/(X^3+X^2-2X-1)[/mm] gilt doch
> > [mm]\overline{X}^3 + \overline{X}^2 - 2 \overline{X} - 1 = 0[/mm],
> > also [mm]\overline{X}^3 = -\overline{X}^2 + 2 \overline{X} + 1[/mm].
> > Und dementsprechend [mm]\overline{X}^4 = (\overline{X}^3) \cdot \overline{X} = (-\overline{X}^2 + 2 \overline{X} + 1) \overline{X} = -\overline{X}^3 + 2 \overline{X}^2 + \overline{X} = -(-\overline{X}^2 + 2 \overline{X} + 1) + 2 \overline{X}^2 + \overline{X} = 3 \overline{X}^2 + 3 \overline{X} + 1[/mm]
> > etc.
> >
>
> Du meinst sicherlich [mm]3\overline{X}^2-\overline{X}-1[/mm] oder?
> :)
Ja, das meinte ich. Sorry :)
LG Felix
|
|
|
|