www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKörperaxiome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Körperaxiome
Körperaxiome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:17 Do 11.11.2010
Autor: Ersti10

Aufgabe
Die Menge M sei gegeben durch

m:={(x,y) [mm] \in \IR^{2} [/mm] : x und y sind rationale Zahlen}

In M sei die Addition und Multiplikation gegeben durch:
(x,y) [mm] \oplus [/mm] (r,s) = (x+r , y+s) und
(x,y) [mm] \odot [/mm] (r,s) = (xr+2ys , xs+yr)

Zeigen sie, dass [mm] (M,\oplus,\odot) [/mm] ein Körper ist.

Guten Morgen,

zu einem interessiert mich, ob die Vorgabe für (x,y) [mm] \odot [/mm] (r,s) stimmt oder ob sich unser Dozent verschrieben hat, da die 2 vor dem ys für mich keinen Sinn ergibt.

Dann noch eine Frage zu den Beweisen vom Körper.
Nehmen wir ganz einfach das Kommutativgesetz, in dem muss ich beweisen, dass x+y=y+x.
Dafür habe ich ja (x,y) und (r,s). Wenn ich nun x+y bewiesen habe und nun zeigen will, dass y+x das selbe ist, muss ich dann beim umstellen auch die Werte in den Klammern vertauschen?
Einmal kurz aufgeschrieben:

(x,y)+(r,s) = (x+r, y+s)

muss ich nun für
(r,s)+(x,y) beweisen oder für (s,r)+(y,x), dass es gleich (x,y)+(r,s) ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Do 11.11.2010
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> Die Menge M sei gegeben durch
>  
> m:={(x,y) [mm]\in \IR^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: x und y sind rationale Zahlen}

>  
> In M sei die Addition und Multiplikation gegeben durch:
>  (x,y) [mm]\oplus[/mm] (r,s) = (x+r , y+s) und
>  (x,y) [mm]\odot[/mm] (r,s) = (xr+2ys , xs+yr)
>  
> Zeigen sie, dass [mm](M,\oplus,\odot)[/mm] ein Körper ist.
>  Guten Morgen,
>  
> zu einem interessiert mich, ob die Vorgabe für (x,y) [mm]\odot[/mm]
> (r,s) stimmt oder ob sich unser Dozent verschrieben hat, da
> die 2 vor dem ys für mich keinen Sinn ergibt.

Hallo,

für mich deutet nichts daraufhin, daß er sich verschrieben hat.
Akzeptiere es einfach, daß hier eine Verknüpfung definiert wurde, derne Eigenschaften Du untersuchen sollst.
Das Nachdenken über den Sinn ist im Moment nicht das Thema, sondern der Umgang mit den Definitionen und Axiomen in etwas fremden Zusammenhängen.
Das sollt Ihr üben.
Die 2 in Frage stellen würde ich erst, wenn dasteht, daß Du Körpereigenschaften zeigen sollst, dies aufgrund der 2 aber nicht möglich ist.

>  
> Dann noch eine Frage zu den Beweisen vom Körper.
>  Nehmen wir ganz einfach das Kommutativgesetz, in dem muss
> ich beweisen, dass x+y=y+x.

Ich fomuliere es mal in Worten: es ist egal, in welcher Reihenfolge man zwei Elemente des Körpers addiert.

>  Dafür habe ich ja (x,y) und (r,s). Wenn ich nun x+y
> bewiesen habe und nun zeigen will, dass y+x das selbe ist,
> muss ich dann beim umstellen auch die Werte in den Klammern
> vertauschen?
>  Einmal kurz aufgeschrieben:
>  
> (x,y)+(r,s) = (x+r, y+s)
>  
> muss ich nun für
>  (r,s)+(x,y)

Hierfür. Die Elemente vom M sind ier in der Aufgabe Paare, und Du zeigst nun, daß beim Vertauschen der Paare bei der Addition dasselbe herauskommt.

Wenn Du innerhalb der Paare tauschen würdest, hättest Du ja völlig andere Elemente vom M am Wickel.

Tip: notiere bei jeder Umformung einen Grund dafür, warum Du sie machen darfst.
Bei dieser Aufgabe wirst Du neben den Definitionen für die beiden Verknüpfungen oft die Regeln für das Rechnen in [mm] \IQ [/mm] verwenden.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]