www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Körperberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Körperberechnung
Körperberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:29 Do 31.03.2005
Autor: Kendra

In der zu lösenden Aufgabe habe ich einen Zylinder mit dem Radius r und der Höhe h, aus dem ein Kegel, mit der Spitze nach unten herausgeschnitten ist.
Nun soll ich den Rauminhalt des "Restkörpers" angeben.

Die zweite Aufgabenstellung lautet: Die Höhe h betrage nunmehr gerade r. Wie hoch muss ein zu einer Kugel vom Radius r gehöriger Kugelabschnitt sein, damit er den gleichen Rauminhalt besitzt?

Mein Rechenweg sieht bis jetzt folgendermaßen aus:

V(Zylinder)= G*h=pi*r²*h
V(Kegel)=1/3G*h=1/3pi*r²*h
V(Zylinder)-V(Kegel)=pi*r²*h-1/3pi*r²*h
V(Rest)=2/3pi*r³

Dies wäre dann der Rauminhalt des Restkörpers.
Nun im zweiten Aufgabenteil folgendes:

2/3pi*r³-1/3pi*h²*(3r-h)

Stimmt das soweit, oder habe da etwas übersehen? Und wie rechne ich nun weiter?

lg
Kendra

        
Bezug
Körperberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 31.03.2005
Autor: spooky

Also, bei der ersten Aufgabe lautet die richtige Formel:
     V(Rest)=2/3phi*r²*h

Und bei der zweiten Aufgabe musst du die beiden Volumina (Restkörper und Kugelabschnitt) gleichsetzten.

2/3phi*r³=1/3phi*h²*(3r-h)


Bezug
        
Bezug
Körperberechnung: Schon fertig
Status: (Antwort) fertig Status 
Datum: 00:36 Fr 01.04.2005
Autor: leduart

Hallo Kendra
> Die zweite Aufgabenstellung lautet: Die Höhe h betrage
> nunmehr gerade r. Wie hoch muss ein zu einer Kugel vom
> Radius r gehöriger Kugelabschnitt sein, damit er den
> gleichen Rauminhalt besitzt?
>  
> Mein Rechenweg sieht bis jetzt folgendermaßen aus:
>  
> V(Zylinder)= G*h=pi*r²*h
>  V(Kegel)=1/3G*h=1/3pi*r²*h
>  V(Zylinder)-V(Kegel)=pi*r²*h-1/3pi*r²*h

>  [mm] V(Rest)=2/3pi*r^{3} [/mm]

so nur richtig mit r=h sonst  [mm] V(Rest)=2/3pi*r^{2} [/mm] *h

>  
> Dies wäre dann der Rauminhalt des Restkörpers.
>  Nun im zweiten Aufgabenteil folgendes:
>  
> 2/3pi*r³-1/3pi*h²*(3r-h)
>  
> Stimmt das soweit, oder habe da etwas übersehen? Und wie
> rechne ich nun weiter?

Ganz einfach: Gleich groß heisst Differenz ist Null! also  2/3pi*r³-1/3pi*h²*(3r-h)=0
und daraus h
Es sollte aber noch schneller gehen ,wenn du siehst dass 2/3pi*r³ Die Hälfze des Kugelvolumens ist.
Diese Entdeckung hat schon Archimedes gemacht, aber auf einem anderen Weg:
Er hat festgestellt, dass wenn man den Kegek mit der Spitze nach unten in den Zylinder stellt, und daneben eine Halbkugel malt (Rundung oben) dann hat das Gebilde Zylinder-Kegel auf jeder Höhe dieselbe
Querschnittsfläche und deshalb sind die Volumina gleich! So kam er aus den einfachen Vol von Zylinder und Kegel auf das Volumen der Kugel: Deshalb soll diese Figur auf seinem Grabstein sein! Du hast also was tolles rausgefunden! (Woher kennt ihr das Volumen der Kugel?)
Viel Spass
leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]