www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKörpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Körpererweiterung
Körpererweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung: Idee
Status: (Frage) beantwortet Status 
Datum: 13:23 Mi 07.07.2010
Autor: makw

Aufgabe
Geben ist: [mm] \IQ(\varepsilon_{n})\cap \IQ(\varepsilon_{m}) =\IQ, [/mm] wobei [mm] \varepsilon_{n},\varepsilon_{m} [/mm] primitive nte bzw. mte Einheitswurzel ist.
Zeige: [mm] \IQ(\varepsilon_{n})\cdot \IQ(\varepsilon_{m})=\IQ(\varepsilon_{nm}) [/mm]

Ok, ich weis ich muss die Basis des Kompositum betrachten und mit die jeweiligen Elemente ansehen? Aber wie kann ich das nun Formal machen und wie muss ich dabei vorgehen?

Vielen im Vorraus. MFG

        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:04 Do 08.07.2010
Autor: felixf

Moin.

> Geben ist: [mm]\IQ(\varepsilon_{n})\cap \IQ(\varepsilon_{m}) =\IQ,[/mm]
> wobei [mm]\varepsilon_{n},\varepsilon_{m}[/mm] primitive nte bzw.
> mte Einheitswurzel ist.

Ich vermute, da hast du ein kleines, aber verdammt wichtiges Detail vergessen: $n$ und $m$ muessen teilerfremd sein!

>  Zeige: [mm]\IQ(\varepsilon_{n})\cdot \IQ(\varepsilon_{m})=\IQ(\varepsilon_{nm})[/mm]
>  
> Ok, ich weis ich muss die Basis des Kompositum betrachten
> und mit die jeweiligen Elemente ansehen? Aber wie kann ich
> das nun Formal machen und wie muss ich dabei vorgehen?

Bestimme die Ordnung von [mm] $\varepsilon_n \varepsilon_m$. [/mm] Zeige, dass dies eine $nm$-te primitive Einheitswurzel ist. Zeige weiterhin, dass du [mm] $\varepsilon_n$ [/mm] und [mm] $\varepsilon_m$ [/mm] aus [mm] $\varepsilon_{n m}$ [/mm] wiederherstellen kannst.

Daraus folgt dann, dass [mm] $\IQ(\varepsilon_n, \varepsilon_m) [/mm] = [mm] \IQ(\varepsilon_{nm})$ [/mm] ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]