www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörpererweiterungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Körpererweiterungen
Körpererweiterungen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Do 14.04.2011
Autor: xtraxtra

Aufgabe
Sei [mm] K\subset [/mm] L eine Körpererweiterung mit [mm] a\in [/mm] L ein Element, sodass [K(a):K]=5
Zeigen Sie, dass K(a)=K(a²)

Gerade mache ich mir gedanken über diese Aufgabe, aber ich kann nicht wirklcih auf eine Lösung kommen.

1. Überlegung: Gradsatz:
[mm] K(a²)\subseteq [/mm] K(a) dann folgt: [K(a):K]=[K(a):K(a²)][K(a²):K]
Da 5 Primzahl ist und [K(a²):K] [mm] \not=1 [/mm] muss [K(a):K(a²)]=1 sein.

2. Überlegung: Minimalpolynom:
Das Mipo von K(a) ist [mm] a_{5}X^5+a_{4}X^4+...+a_{0} [/mm] vielleicht kann man zeigen, dass das auch das Mipo von K(a²) ist.

Ich wäre froh, wenn mir jmd weiterhelfen könnte.

        
Bezug
Körpererweiterungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Do 14.04.2011
Autor: felixf

Moin!

> Sei [mm]K\subset[/mm] L eine Körpererweiterung mit [mm]a\in[/mm] L ein
> Element, sodass [K(a):K]=5
>  Zeigen Sie, dass K(a)=K(a²)
>  Gerade mache ich mir gedanken über diese Aufgabe, aber
> ich kann nicht wirklcih auf eine Lösung kommen.
>  
> 1. Überlegung: Gradsatz:
>  [mm]K(a²)\subseteq[/mm] K(a) dann folgt:
> [K(a):K]=[K(a):K(a²)][K(a²):K]
> Da 5 Primzahl ist und [K(a²):K] [mm]\not=1[/mm] muss
> [K(a):K(a²)]=1 sein.

Oder gleich 5. Ansonsten waerst du ja schon fertig.

Du musst jetzt zeigen, dass $[K(a) : [mm] K(a^2)]$ [/mm] nicht 5 sein kann.

> 2. Überlegung: Minimalpolynom:

Sag doch mal etwas ueber das Minimalpolynom von $a$ ueber [mm] $K(a^2)$. [/mm] Gib z.B. irgendein einfaches Polynom mit Koeffizienten in [mm] $K(a^2)$ [/mm] an, welches $a$ als Nullstelle hat.

Damit kannst du etwas ueber $K(a) = [mm] K(a^2)(a)$ [/mm] ueber [mm] $K(a^2)$ [/mm] aussagen.

LG Felix


Bezug
                
Bezug
Körpererweiterungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Do 14.04.2011
Autor: xtraxtra


> Du musst jetzt zeigen, dass $ [K(a) : [mm] K(a^2)] [/mm] $ nicht 5 sein kann.

Und genau dass wusste ich eben nicht, wie ich es anstelle.

Bezug
                        
Bezug
Körpererweiterungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 14.04.2011
Autor: felixf

Moin!

> > Du musst jetzt zeigen, dass [mm][K(a) : K(a^2)][/mm] nicht 5 sein
> > kann.
> Und genau dass wusste ich eben nicht, wie ich es anstelle.

Der Grad ist gleich dem Grad des Minimalpolynoms von $a$ ueber [mm] $K(a^2)$. [/mm] Schau dir dazu das an, was ich unten in der letzten Antwort geschrieben hatte.

LG Felix



Bezug
                                
Bezug
Körpererweiterungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Fr 15.04.2011
Autor: xtraxtra


> Sag doch mal etwas ueber das Minimalpolynom von $ a $ ueber $ [mm] K(a^2) [/mm] $.
> Gib z.B. irgendein einfaches Polynom mit Koeffizienten in $ [mm] K(a^2) [/mm] $ an, Y
> welches $ a $ als Nullstelle hat.

Könntest du mir das bitte an einem Beispiel zeigen, ich komm damit gerade gar nicht zurrecht.



Bezug
                                        
Bezug
Körpererweiterungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 15.04.2011
Autor: felixf

Moin!

> > Sag doch mal etwas ueber das Minimalpolynom von [mm]a[/mm] ueber
> [mm]K(a^2) [/mm].
> > Gib z.B. irgendein einfaches Polynom mit Koeffizienten in
> [mm]K(a^2)[/mm] an, Y
>  > welches [mm]a[/mm] als Nullstelle hat.

>  
> Könntest du mir das bitte an einem Beispiel zeigen, ich
> komm damit gerade gar nicht zurrecht.

Wenn du etwa das Element $b$ ueber dem Koerper $E$ hast und $F := E((b + [mm] 1)^3)$ [/mm] setzt, dann ist $b$ eine Nullstelle von $f := (T + [mm] 1)^3 [/mm] - (b + [mm] 1)^3 [/mm] = [mm] T^3 [/mm] + 3 [mm] T^2 [/mm] + 3 T + (1 - (b + [mm] 1)^3) \in [/mm] F[T]$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]